Зарядка для малогабаритных аккумуляторов. Зарядное для зарядки малогабаритных аккумуляторов - Конструкции простой сложности - Схемы для начинающих

Устройство для зарядки малогабаритных аккумуляторов

На питании малогабаритной аппаратуры от гальванических элементов и батарей при сегодняшних ценах можно буквально разориться. Выгоднее, потратясь один раз, перейти на использование аккумуляторов. Для того чтобы они служили долго, их необходимо правильно эксплуатировать: не разряжать ниже допустимого напряжения, заряжать стабильным током, вовремя прекращать зарядку. Но если за выполнением первого из этих условий приходится следить самому пользователю, то выполнение двух остальных желательно возложить на зарядное устройство. Именно такое устройство и описывается в статье.

При разработке ставилась задача сконструировать устройство, обладающее следующими характеристиками:

  • широкими интервалами изменения зарядного тока и напряжения автоматического прекращения зарядки (АПЗ). обеспечивающими зарядку как отдельных аккумуляторов, применяемых для питания малогабаритной аппаратуры, так и составленных из них батарей при минимальном числе механических переключателей;
  • близкими к равномерным шкалами регуляторов, позволяющими с приемлемой точностью устанавливать зарядный ток и напряжение АПЗ без каких-либо измерительных приборов;
  • высокой стабильностью зарядного тока при изменении сопротивления нагрузки;
  • относительной простотой и хорошей повторяемостью.

Описываемое устройство полностью отвечает этим требованиям. Оно предназначено для зарядки аккумуляторов Д-0,03, Д-0,06. Д-0,125, Д-0,26, Д-0,55. ЦНК-0,45, НКГЦ-1,8, их импортных аналогов и батарей, составленных из них. До выставленного порога включения системы АПЗ аккумулятор заряжается стабилизированным током, не зависящим от типа и числа элементов, при этом напряжение на нем по мере зарядки постепенно растет. После срабатывания системы на аккумуляторе стабильно поддерживается выставленное ранее постоянное напряжение, а зарядный ток уменьшается. Иными словами, перезарядки и разрядки аккумулятора не происходит, и он может оставаться подключенным к устройству длительное время.

Устройство можно использовать в качестве блока питания малогабаритной аппаратуры с регулируемым напряжением от 1,5 до 13 В и защитой от перегрузки и короткого замыкания в нагрузке.

Основные технические характеристики устройства следующие:

  • зарядный ток на пределе "40 мА" - 0...40, на пределе "200 мА" - 40...200 мА;
  • нестабильность зарядного тока при изменении сопротивления нагрузки от 0 до 40 Ом - 2.5 %;
  • пределы регулирования напряжения срабатывания АПЗ - 1,45... 13 В.

Принципиальная схема устройства изображена на рис. 1.

В качестве стабилизатора зарядного тока применен источник тока на транзисторе \Л"4. В зависимости от положения переключателя SA2 ток в нагрузке Iн определяется соотношениями: IН = (UБ - UБЭ)/R10 и IН = (UБ - UБЭ)/(R9 + R10), где UБ - напряжение на базе транзистора VT4 относительно плюсовой шины, В; UБЭ - падение напряжения на его эмиттерном переходе, В; R9, R10 - сопротивления соответствующих резисторов, Ом.

Из этих выражений следует, что. изменяя напряжение на базе транзистора VT4 переменным резистором R8. можно регулировать ток нагрузки в широких пределах. Напряжение на этом резисторе поддерживается неизменным стабилитроном VD6, ток через который, в свою очередь, стабилизирован полевым транзистором VT2. Все это и обеспечивает нестабильность зарядного тока, указанную в технических характеристиках. Применение источника стабильного тока, управляемого напряжением, позволило изменять зарядный ток вплоть до весьма малых значений, иметь близкую к равномерной шкалу регулятора тока (R8) и достаточно просто переключать пределы его регулирования.

Система АПЗ. срабатывающая после достижения предельно допустимого напряжения на аккумуляторе или батарее, включает в себя компаратор на ОУ DA1, электронный ключ на транзисторе VT3, стабилитрон VD5. стабилизатор тока на транзисторе VT1 и резисторах R1 - R4. Индикатором зарядки и ее окончания служит светодиод HL1.

При подключении к устройству разряженного аккумулятора напряжение на нем и неинвертирующем входе ОУ DA1 меньше образцового на инвертирующем, которое установлено переменным резистором R3. По этой причине напряжение на выходе ОУ близко к напряжению общего провода, транзистор VT3 открыт, через аккумулятор течет стабильный ток, значение которого определяется положениями движка переменного резистора R8 и переключателя SA2.

По мере зарядки аккумулятора напряжение на инвертирующем входе ОУ DA1 возрастает. Повышается напряжение и на его выходе, поэтому транзистор VT2 выходит из режима стабилизации тока, VT3 постепенно закрывается и его коллекторный ток уменьшается. Процесс продолжается до тех пор. пока стабилитрон VD6 не перестает стабилизировать напряжение на резисторах R7, R8. С понижением этого напряжения транзистор VT4 начинает закрываться и зарядный ток быстро уменьшается. Его конечное значение определяется суммой тока саморазрядки аккумулятора и тока, текущего через резистор R11. Иными словами, с этого момента на заряженном аккумуляторе поддерживается напряжение, установленное резистором R3, а через аккумулятор течет ток, необходимый для поддержания этого напряжения.

Светодиод HL1 индицирует включение устройства в сеть и две фазы процесса зарядки. При отсутствии аккумулятора на резисторе R11 устанавливается напряжение, определяемое положением движка переменного резистора R3. Для поддержания этого напряжения требуется весьма незначительный ток, поэтому HL1 светится очень слабо. В момент подключения аккумулятора яркость его свечения возрастает до максимальной, а после срабатывания системы АПЗ по окончании зарядки - скачкообразно уменьшается до средней между названными выше. При желании можно ограничиться двумя уровнями свечения (слабое, сильное), для чего достаточно подобрать резистор R6.

Детали устройства смонтированы на печатной плате, чертеж которой показан на рис. 2. Она выполнена методом прорезания фольги и рассчитана на установку постоянных резисторов МЛТ, подстроечного (проволочного) ППЗ-43. конденсаторов К52-1Б (С1) и KM (С2). Транзистор VT4 установлен на теплоотводе с эффективной площадью теплового рассеяния 100 см2. Переменные резисторы R3 и R8 (ППЗ-11 группы А) закреплены на передней панели устройства и снабжены шкалами с соответствующими отметками.

(нажмите для увеличения)

Переключатели SA1 и SA2 - любого типа, желательно, однако, чтобы контакты используемого в качестве SA2 были рассчитаны на коммутацию тока не менее 200 мА.

Сетевой трансформатор Т1 должен обеспечивать на вторичной обмотке переменное напряжение 20 В при токе нагрузки 250 мА.

Полевые транзисторы КП303В можно заменить на КП303Г - КП303И, биполярные КТ361В - на транзисторы серий КТ361. КТ3107, КТ502 с любым буквенным индексом (кроме А), а КТ814Б - на КТ814В, КТ814Г, КТ816В, КТ816Г. Стабилитрон Д813 (VD5) необходимо подобрать с напряжением стабилизации не менее 12,5 В. Вместо него допустимо использовать Д814Д или любые два соединенных последовательно маломощных стабилитрона с суммарным напряжением стабилизации 12,5... 13,5 В. Возможна замена ППЗ-11 (R3, R8) переменными резисторами любого типа группы А, а ППЗ-43 (R10) - подстроенным резистором любого типа с мощностью рассеяния не менее 3 Вт.

Налаживание устройства начинают с подбора яркости свечения светодиода HL1. Для этого переводят переключатели SA1 и SA2 соответственно в положения "13 В" и "40 мА". а движок переменного резистора R8 - в среднее, подключают к гнездам XS1 и XS2 резистор сопротивлением 50... 100 Ом и находят такое положение движка резистора R3. в котором изменяется яркость свечения HL1. Увеличения различия в яркости свечения добиваются подбором резистора R6.

Затем устанавливают границы интервалов регулирования зарядного тока и напряжения АПЗ. Подключив к выходу устройства миллиамперметр с пределом измерения 200...300 мА. переводят движок резистора R8 в нижнее (по схеме) положение, а переключатель SA2 - в положение "200 мА". Изменением сопротивления подстроечного резистора R10 добиваются отклонения стрелки прибора до отметки 200 мА. Затем перемещают движок R8 в верхнее положение и подбором резистора R7 добиваются показаний 36...38 мА. Наконец, переключают SA2 о положение "40 мА". возвращают движок переменного резистора R8 в нижнее положение и подбором R9 устанавливают выходной ток в пределах 43...45 мА.

Для подгонки границ интервала регулирования напряжения АПЗ переключатель SA1 устанавливают в положение "13 В", а к выходу устройства подключают вольтметр постоянного тока с пределом измерения 15...20 В. Подбором резисторов R1 и R4 добиваются показаний 4,5 и 13 В в крайних положениях движка резистора R3. После этого, переведя SA1 в положение "4,5 В", в тех же положениях движка R3 устанавливают стрелку прибора на отметки 1.45 и 4,5 В подбором резистора R2.

В процессе эксплуатации напряжение АПЗ устанавливают из расчета 1,4... 1,45 В на один заряжаемый аккумулятор.

Если устройство не предполагается использовать для питания радиоаппаратуры, индикацию окончания зарядки погасанием светодиода можно заменить его миганием, для чего достаточно ввести в компаратор гистерезис - дополнить устройство резисторами R12, R13 (рис. 3), а резистор R6 удалить.

После такой доработки при достижении установленного значения напряжения АПЗ светодиод HL1 погаснет, а зарядный ток через аккумулятор полностью прекратится. В результате напряжение на нем начнет падать, поэтому вновь включится стабилизатор тока и загорится светодиод HL1. Иными словами, при достижении установленного напряжения HL1 начнет мигать, что иногда более наглядно, чем некая средняя яркость свечения. Характер процесса зарядки аккумулятора в обоих случаях остается неизменным.

Кто не сталкивался в своей практике с необходимостью зарядки батареи и, разочаровавшись в отсутствии зарядного устройства с необходимыми параметрами, вынужден был приобретать новое ЗУ в магазине, либо собирать вновь нужную схему?
Вот и мне неоднократно приходилось решать проблему зарядки различных аккумуляторных батарей, когда под рукой не оказывалось подходящего ЗУ. Приходилось на скорую руку собирать что-то простое, применительно к конкретному аккумулятору.

Ситуация была терпимой до того момента, пока не появилась необходимость в массовой подготовке и, соответственно, зарядке батарей. Понадобилось изготовить несколько универсальных ЗУ - недорогих, работающих в широком диапазоне входных и выходных напряжений и зарядных токов.

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее - АБ).

Все представленные схемы имеют следующие основные параметры:
входное напряжение 15-24 В;
ток заряда (регулируемый) до 4 А;
выходное напряжение (регулируемое) 0,7 - 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.

Схема ЗУ № 1 (TL494)


ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН - вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее - ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 - соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона VH1 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

Калибровка порога и гистерезиса зарядного устройства

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП - к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения - ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, - при недостаточной глубине гистерезиса, - вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале - в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 - следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму "-" АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.

Схема ЗУ № 2 (TL494)


Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства - использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же , как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.

Схема ЗУ № 3 (TL494)


В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).

Схема ЗУ № 3а (TL494)


Схема 3а - как вариант схемы 3.

Схема ЗУ № 4 (TL494)


ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.

Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе. Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей.
Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.

Схема ЗУ № 5 (MC34063)


На схеме 5 вариант ШИ-регулятора с регулировкой тока и напряжения выполнена на микросхеме ШИМ/ЧИМ MC34063 с «довеском» на ОУ CA3130 (возможно использование прочих ОУ), с помощью которого осуществляется регулировка и стабилизация тока.
Такая модификация несколько расширила возможности MC34063 в отличии от классического включения микросхемы позволив реализовать функцию плавной регулировки тока.

Схема ЗУ № 6 (UC3843)


На схеме 6 - вариант ШИ-регулятора выполнен на микросхеме UC3843 (U1), ОУ CA3130 (IC1), оптроне LTV817. Регулировка тока в этом варианте ЗУ осуществляется с помощью переменного резистора PR1 по входу токового усилителя микросхемы U1, выходное напряжение регулируется с помощью PR2 по инвертирующему входу IC1.
На «прямом» входе ОУ присутствует «обратное» опорное напряжение. Т.е., регулирование производится относительно "+" питания.

В схемах 5 и 6, при экспериментах использовались те же наборы компонентов (включая дроссели). По результатам испытаний все перечисленные схемы мало в чем уступают друг другу в заявленном диапазоне параметров (частота/ток/напряжение). Поэтому схема с меньшим количеством компонентов предпочтительнее для повторения.

Схема ЗУ № 7 (TL494)


ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4.
В схему введены дополнительно режимы.
1. «Калибровка - заряд» - для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора.
2. «Сброс» - для сброса ЗУ в режим заряда.
3. «Ток - буфер» - для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.

Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».

Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2. Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.

Схема № 8

Применения калибровочного источника напряжения можно избежать, используя для калибровки собственно ЗУ. В этом случае следует отвязать выход ТШ от ШИ-регулятора, предотвратив его выключение при окончании заряда АБ, определяемым параметрами ТШ. АБ так или иначе будет отключена от ЗУ контактами реле К1. Изменения для этого случая показаны на схеме 8.


В режиме калибровки тумблер S1 отключает реле от плюса источника питания для предотвращения неуместных срабатываний. При этом работает индикация срабатывания ТШ.
Тумблер S2 осуществляет (при необходимости) принудительное включение реле К1 (только при отключенном режиме калибровки). Контакт К1.2 необходим для смены полярности амперметра при переключении батареи на нагрузку.
Таким образом однополярный амперметр будет контролировать и ток нагрузки. При наличии двухполярного прибора, этот контакт можно исключить.

Конструкция зарядного устройства

В конструкциях желательно в качестве переменных и подстроечных резисторов использование многооборотных потенциометров во избежании мучений при установке необходимых параметров.


Варианты конструктива приведены на фото. Схемы распаивались на перфорированных макетных платах экспромтом. Вся начинка смонтирована в корпусах от ноутбучных БП.
В конструкциях использовались (они же использовались и в качестве амперметров после небольшой доработки).
На корпусах смонтированы гнезда для внешнего подключения АБ, нагрузки, джек для подключения внешнего БП (от ноутбука).

Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

Читательское голосование

Статью одобрили 77 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

В настоящее время широко применяются устройства, для автоматической зарядки с аккумуляторов напряжением 6 и 12 В. Опыт эксплуатации аккумуляторов показываете т целесообразность раздельной и независимой зарядки аккумуляторных элементов с напряжением 1.25 В каждый. Действительно, в природе нет абсолютно одинаковых по параметрам аккумуляторов. Даже аккумуляторы одной серии и партии отличаются друг от друга, особенно через некоторое время. Индивидуальная зарядка позволяет наиболее полно восстановить ёмкость каждого аккумулятора. Только за счёт индивидуальной зарядки аккумуляторных элементов срок их эксплуатации возрастает на 50... 100%. Приводиться схема доработанного зарядного устройства. Другое отличие от аналогичных схем использование двух компараторов вместо четырех. Казалось бы, для этого достаточно включить света диоды индикации режима непосредственно с выходов компараторов на корпус. Однако сразу же возникают проблемы: напряжение на выходе компараторов при работе изменяется от нулевого во время зарядки аккумуляторов до половины напряжения источника питания микросхем в режиме ожидания заряда. При этом естественно, ток заряда, аккумуляторов полностью не прекращается, а только незначительно уменьшается. Замена микросхемы на аналогичную или подбор не приводят к устранению этого явления. Задачу удалось решить, изменив схему включения светодиода, ожидания даже при использовании в схеме слаботочных компараторов. Упростилась и схема зарядного устройства: вместо микросхемы счетверенного: компаратора LT339 применено менее дефицитная и белее дешевая микросхема сдвоенного компаратора LTЗ93. При желании радиолюбители могут попробовать использовать микросхемы бытовых сдвоенных операционных усилителей, например, серии 1458 или К157УД2. Компараторы напряжения DA1.1 и DA1.2 управляют работой зарядных устройств. Напряжение на инвертирующих входах компараторов является эталонным для схемы и выставляется при настройке подстроечным резистором R3. диоды VD5 и VD10 защищают микросхему DA1 при ошибочном подключении к устройству аккумуляторов в противоположной полярности. Если напряжение подключаемого аккумулятора меньше чем опорного напряжения инвертирующего входа компаратора, то на выходе компаратора устанавливается низкий потенциал – около 0,18 В. При этом через резистор R9 (R14) и стабилитрон VD6 (VD12) отпирается VТ1 (VT2). Зажигается светодиод VD7 (VD15) зелёного цвета свечения, одновременно стабилизируя напряжение на базе транзистора. Резистор R11 (R17) в цепи эмиттера транзистора обеспечивают работу ключа в режиме стабилизации тока. Подбирая сопротивление этого резистора при настройке схемы, можно задать необходимый для данного типа аккумулятора ток заряда. Диод VD8 (VD16) в цепи коллектора транзистора VT1(VT2) препятствует разряду аккумулятора при отключении зарядного устройства от сети или перебоях электропитания. Как только аккумулятор зарядиться, возрастёт напряжение на инвертирующем входе компаратора, и он переключиться. Зелёный светодиод гаснет, а красный светодиод VD11(VD13) зажигается. Это происходит из-за того, что напряжение на выходе компаратора скачком возрастает почти до напряжения источника питания. Поскольку микросхемы компараторов маломощные, из-за нагрузки напряжение на их выходе возрастает не до напряжения питания микросхем, а менее этой величины на 1,5…2 В. При отсутствии стабилитронов VD6, VD14 это привело бы к неполному запиранию транзисторов VT1, VT2 и наличию существенного тока дозаряда аккумуляторов. Резисторы R7, R12 обеспечивают гистерезис переключения компараторов. При увеличении сопротивлений гистерезис уменьшается. В режиме заряде аккумуляторов выходное сопротивление микросхем компараторов DA1 через диоды VD9,VD12 шунтируют светодиоды VD11,VD13, и они не светятся. Как только аккумулятор зарядиться и компаратор перейдёт в другое устойчивое состояние, напряжение на выходе компараторе скачком возрастает, красный светодиод уже не шунтируется и начинает светиться. Настройку устройства проще всего осуществить по следующей методике. К зарядному устройству подключают предварительно полностью заряженный аккумулятор. Регулируя сопротивление подстроечного резистора R3, добиваются зажигания красного светодиода. Если теперь подключить разряженный аккумулятор, то красный светодиод погаснет, а зелёный загорится. Подбирая сопротивление резисторов R11 и R17, устанавливают необходимый ток заряда аккумуляторов, который, как правило, выбирают равным по величине 0,1 ёмкости аккумулятора. Ток, для аккумуляторов ёмкостью 0,6 Ач был установлен около 60 мА. В качестве R3 целесообразно использовать многооборотный подстроечный резистор типа С15-2. Его сопротивление не критично. Транзисторы VT1, VT2 в авторском варианте установлены на небольшие радиаторы.

Радиоаматор №1 2006г стр. 25

Я постарался вставить в заголовок этой статьи все плюсы данной схемы, которою мы будем рассматривать и естественно у меня это не совсем получилось. Так что давайте теперь рассмотрим все достоинства по порядку.
Главным достоинством зарядного устройство является то, что оно полностью автоматическое. Схема контролирует и стабилизирует нужный ток зарядки аккумулятора, контролирует напряжение аккумуляторной батареи и как оно достигнет нужного уровня – убавит ток до нуля.

Какие аккумуляторные батареи можно заряжать?

Практически все: литий-ионные, никель-кадмиевые, свинцовые и другие. Масштабы применения ограничиваются только током заряда и напряжением.
Для всех бытовых нужд этого будет достаточно. К примеру, если у вас сломался встроенный контроллер заряда, то можно его заменить этой схемой. Аккумуляторные шуруповерты, пылесосы, фонари и другие устройства возможно заряжать этим автоматическим зарядным устройством, даже автомобильные и мотоциклетные батареи.

Где ещё можно применить схему?

Помимо зарядного устройства можно применить данную схему как контроллер зарядки для альтернативных источников энергии, таких как солнечная батарея.
Также схему можно использовать как регулируемый источник питания для лабораторных целей с защитой короткого замыкания.

Основные достоинства:

  • - Простота: схема содержит всего 4 довольно распространённых компонента.
  • - Полная автономность: контроль тока и напряжения.
  • - Микросхемы LM317 имеют встроенную защиту от короткого замыкания и перегрева.
  • - Небольшие габариты конечного устройства.
  • - Большой диапазон рабочего напряжения 1,2-37 В.

Недостатки:

  • - Ток зарядки до 1,5 А. Это скорей всего не недостаток, а характеристика, но я определю данный параметр сюда.
  • - При токе больше 0,5 А требует установки на радиатор. Также следует учитывать разницу между входным и выходным напряжением. Чем эта разница будет больше, тем сильнее будут греться микросхемы.

Схема автоматического зарядного устройства

На схеме не показан источник питания, а только блок регулировки. Источником питания может служить трансформатор с выпрямительным мостом, блок питания от ноутбука (19 В), блок питания от телефона (5 В). Все зависит от того какие цели вы преследуете.
Схему можно поделать на две части, каждая из них функционирует отдельно. На первой LM317 собран стабилизатор тока. Резистор для стабилизации рассчитывается просто: «1,25 / 1 = 1,25 Ом», где 1,25 – константа которая всегда одна для всех и «1» - это нужный вам ток стабилизации. Рассчитываем, затем выбираем ближайший из линейки резистор. Чем выше ток, тем больше мощность резистора нужно брать. Для тока от 1 А – минимум 5 Вт.
Вторая половина - это стабилизатор напряжения. Тут все просто, переменным резистором выставляете напряжение заряженного аккумулятора. К примеру, у автомобильных батарей оно где-то равно 14,2-14,4. Для настройки подключаем на вход нагрузочный резистор 1 кОм и измеряем мультиметром напряжение. Выставляем подстрочным резистором нужное напряжение и все. Как только батарея зарядится и напряжение достигнет выставленного – микросхема уменьшит ток до нуля, и зарядка прекратиться.
Я лично использовал такое устройство для зарядки литий-ионных аккумуляторов. Ни для кого не секрет, что их нужно заряжать правильно и если допустить ошибку, то они могут даже взорваться. Это ЗУ справляется со всеми задачами.



Чтобы контролировать наличие заряда можно воспользоваться схемой, описанной в этой статье - .
Есть ещё схема включения этой микросхемы в одно: и стабилизация тока и напряжения. Но в таком варианте наблюдается не совсем линейная работа, но в некоторых случаях может и сгодиться.
Информативное видео, только не на русском, но формулы расчета понять можно.
Поделиться: