Температура что это такое? Понятие температуры и температурной шкалы Что называют температурой.

ТЕМПЕРАТУРА И ЕЁ ИЗМЕРЕНИЕ.

ЭКСПЕРИМЕНТАЛЬНЫЕ ГАЗОВЫЕ ЗАКОНЫ.

1.Тепловое равновесие. Температура.

Температура – это физическая величина, характеризующая степень нагретости тела. Если два тела разной температуры привести в соприкосновение, то, как показывает опыт, более нагретое тело будет охлаждаться, а менее нагретое – нагреваться, т.е. происходит теплообмен – передача энергии от более нагретого тела к менее нагретому без совершения работы.

Энергия, передаваемая при теплообмене, называется количеством теплоты .

Через некоторое время после приведения тел в соприкосновение они приобретают одинаковую степень нагретости, т.е. приходят в состояние теплового равновесия .

Тепловое равновесие – это такое состояние системы тел, находящихся в тепловом контакте, при котором теплообмен не происходит и все макропараметры тел остаются неизменными, если внешние условия не меняются.

При этом два параметра – объём и давление – могут быть различными для разных тел системы, а третий, температура, в случае теплового равновесия одинаков для всех тел системы. На этом основано определение температуры.

Физический параметр, одинаковый для всех тел системы, находящихся в состоянии теплового равновесия, называется температурой этой системы.

Например, система состоит из двух сосудов с газом. Приведём их в соприкосновение. Объём и давление газа в них могут быть различными, а температура в результате теплообмена станет одинаковой.

2.Измерение температуры.

Для измерения температуры используют физические приборы – термометры, в которых о величине температуры судят по изменению какого-либо параметра.

Для создания термометра необходимо:

    Выбрать термометрическое вещество, параметры (характеристики) которого изменяются при изменении температуры (например, ртуть, спирт и т.д.);

    Выбрать термометрическую величину, т.е. величину, которая изменяется с изменением температуры (например, высота ртутного или спиртового столбика, величина электрического сопротивления и т.д.);

    Откалибровать термометр, т.е. создать шкалу, по которой будет производиться отсчёт температуры. Для этого термометрическое тело приводится в тепловой контакт с телами, температуры которых постоянны. Например, при построении шкалы Цельсия температура смеси воды и льда в состоянии плавления принимается за 0 0 С, а температура смеси водяного пара и воды в состоянии кипения при давлении 1 атм. – за 100 0 С. Отмечается положение столбика жидкости в обоих случаях, а затем расстояние между полученными метками делится на 100 делений.

При измерении температуры термометр приводят в тепловой контакт с телом, температура которого измеряется, и после того, как установится тепловое равновесие (показания термометра перестанут меняться), считывается показание термометра.

3.Экспериментальные газовые законы.

Параметры, описывающие состояние системы, взаимозависимы. Установить зависимость друг от друга сразу трёх параметров сложно, поэтому немного упростим задачу. Рассмотрим процессы, при которых

а) количество вещества (или масса) постоянно, т.е. ν=const (m=const);

б) значение одного из параметров фиксировано, т.е. постоянно либо давление, либо объём, либо температура.

Такие процессы называются изопроцессами .

1).Изотермический процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянной температуре.

Исследован Бойлем (1662 г.) и Мариоттом (1676 г.).

Упрощённая схема опытов такова. Рассмотрим сосуд с газом, закрытый подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа.

Опыт показал, что произведение давления на объём газа при постоянной температуре есть величина постоянная. Это значит

PV = const

Закон Бойля-Мариотта .

Объём V данного количества газа ν при постоянной температуре t 0 обратно пропорционален его давлению, т.е. .

Графики изотермических процессов.

График зависимости давления от объёма при постоянной температуре называется изотермой. Чем больше температура, тем выше на графике располагается изотерма.

2).Изобарный процесс, т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном давлении.

Исследован Гей-Люссаком (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на котором установлен грузик, уравновешивающий давление газа. Сосуд с газом нагревается.

Опыт показал, что при нагревании газа при постоянном давлении его объём изменяется по следующему закону: где V 0 – объём газа при температуре t 0 = 0 0 C; V – объём газа при температуре t 0 , α v – температурный коэффициент объёмного расширения,

Закон Гей-Люссака .

Объём данного количества газа при постоянном давлении линейно зависит от температуры.

Графики изобарных процессов.

График зависимости объёма газа от температуры при постоянном давлении называется изобарой.

Если экстраполировать (продолжить) изобары в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

3).Изохорный процесс , т.е. процесс, происходящий с одним и тем же количеством вещества при постоянном объёме.

Исследован Шарлем (1802 г.).

Упрощённая схема такова. Сосуд с газом закрыт подвижным поршнем, на который устанавливаются грузики, уравновешивающие давление газа. Сосуд нагревается.

Опыт показал, что при нагревании газа при постоянном объёме его давление изменяется по следующему закону: где P 0 – объём газа при температуре t 0 = 0 0 C; P – объём газа при температуре t 0 , α p – температурный коэффициент давления,

Закон Шарля .

Давление данного количества газа при постоянном объёме линейно зависит от температуры.

График зависимости давления газа от температуры при постоянном объёме называется изохорой.

Если экстраполировать (продолжить) изохоры в область низких температур, то все они сойдутся в точке, соответствующей температуре t 0 = - 273 0 С.

4.Абсолютная термодинамическая шкала.

Английский учёный Кельвин предложил переместить начало температурной шкалы влево на 273 0 и назвать эту точку абсолютным нулём температуры. Масштаб новой шкалы такой же, как и у шкалы Цельсия. Новая шкала называется шкалой Кельвина или абсолютной термодинамической шкалой. Единица измерения – кельвин.

Нулю градусов Цельсия соответствует 273 К. Температура по шкале Кельвина обозначается буквой Т.

T = t 0 C + 273

t 0 C = T – 273

Новая шкала оказалась более удобной для записи газовых законов.

Школьных и вузовских учебниках можно встретить множество самых различных объяснений температуры. Температура определяется как величина, отличающая горячее от холодного, как степень нагретости тела, как характеристика состояния теплового равновесия, как величина, пропорциональная энергии, приходящейся на степень свободы частицы, и т.д. и т.п. Чаще всего температуру вещества определяют как меру средней энергии теплового движения частиц вещества, или как меру интенсивности теплового движения частиц. Небожитель физики – теоретик удивится: «А чего тут непонятного? Температура – это dQ / dS , где Q – теплота, а S – энтропия!» Такое изобилие определений у любого критически мыслящего человека вызывает подозрение, что общепринятого научного определения температуры в настоящее время в физике не существует.

Попытаемся найти простое и конкретное толкование этого понятия на уровне, доступном для выпускника средней школы. Представим себе такую картину. Выпал первый снег, и два брата на перемене в школе затеяли забаву , известную под названием «снежки». Посмотрим, какая энергия передается игрокам в ходе этого состязания. Для простоты полагаем, что все снаряды попадают в цель. Игра протекает с явным перевесом для старшего брата. У него и снежные шарики покрупнее, да и бросает он их с большей скоростью . Энергия всех брошенных им снежков , где N с – количество бросков, а - средняя кинетическая энергия одного шарика. Средняя энергия находится по обычной формуле:

здесь m - масса снежков, а v - их скорость.

Однако не вся затраченная старшим братом энергия будет передана его младшему партнеру. В самом деле, снежки попадают в цель под разными углами, поэтому некоторые из них, отразившись от человека, уносят часть первоначальной энергии. Правда, бывают и «удачно» брошенные шарики, результатом которых может быть синяк под глазом. В последнем случае вся кинетическая энергия снаряда передается обстреливаемому субъекту. Таким образом, мы приходим к выводу, что энергия снежков, переданная младшему брату, будет равна не E с , а
, где Θ с – усреднённое значение кинетической энергии, которое передается младшему партнеру при попадании в него одного снежного шарика . Понятно, что чем больше энергия, приходящаяся в среднем на один брошенный шарик, тем больше будет и средняя энергия Θ с , передаваемая мишени одним снарядом. В простейшем случае зависимость между ними может быть прямо пропорциональной: Θ с =a . Соответственно младший школьник затратил за всё состязание энергию
, но энергия, переданная старшему брату, будет меньше: она равна
, где N м – число бросков, а Θ м – усреднённая энергия одного снежка, поглощенная старшим братом.

Нечто подобное происходит при тепловом взаимодействии тел. Если привести в контакт два тела, то молекулы первого тела за небольшой промежуток времени передадут второму телу энергию в виде теплоты
, где Δ S 1 – количество соударений молекул первого тела со вторым телом, а Θ 1 – это средняя энергия, которую молекула первого тела передаёт за одно столкновение второму телу. За это же время молекулы второго тела потеряют энергию
. Здесь Δ S 2 – число элементарных актов взаимодействия (число ударов) молекул второго тела с первым телом, а Θ 2 - средняя энергия, которую молекула второго тела передаёт за один удар первому телу. Величина Θ в физике получила название температуры . Как показывает опыт, она связана со средней кинетической энергией молекул тел соотношением:

(2)

А теперь можно подвести итоги всех приведенных выше рассуждений. Какой же вывод мы должны сделать относительно физического содержания величины Θ ? Он, на наш взгляд, совершенно очевиден.

тела передаёт другому макроскопическому объекту за одно

соударение с этим объектом.

Как следует из формулы (2) температура – это энергетический параметр, значит, единицей измерения температуры в системе СИ является джоуль. Так, что строго говоря, Вы должны жаловаться примерно так: «Похоже, вчера я простудился, голова болит, и температура – аж 4,294·10 -21 Дж!» Не правда ли, непривычная единица измерения температуры, да и величина какая-то уж слишком малая? Но не забывайте, что речь идет об энергии, которая составляет часть от средней кинетической энергией всего-то одной молекулы!

На практике температуру измеряют в произвольно выбранных единицах : флорентах, кельвинах, градусах Цельсия, градусах Ранкина, градусах Фаренгейта и т.д. (Могу же я определить длину не в метрах, а в кабельтовых, саженях, шагах, вершках, футах и т.п. Помнится, в одном из мультфильмов длину удава считали даже в попугаях!)

Для измерения температуры необходимо использовать некоторый датчик, который следует привести в контакт с исследуемым предметом , Этот датчик мы будем называть термометрическим телом . Термометрическое тело должно обладать двумя свойствами. Во-первых, это оно должно быть значительно меньше исследуемого объекта (правильней сказать, теплоемкость термометрического тела должна быть много меньше теплоемкости исследуемого предмета). Вы никогда не пробовали измерить температуру, скажем, комара с помощью обычного медицинского градусника? А Вы попробуйте! Что, ничего не получается? Все дело в том, что в процессе теплообмена насекомое не сможет изменить энергетическое состояние градусника, так как суммарная энергия молекул комара ничтожно мала по сравнению с энергией молекул градусника .

Ну, ладно, возьму маленький предмет, к примеру, карандаш, и с его помощью попробую измерить свою температуру. Опять что-то не ладится... А причина неудачи заключается в том, что термометрическое тело должно обладать ещё одним обязательным свойством: при контакте с исследуемым объектом в термометрическом теле должны происходить изменения, которые можно зарегистрировать визуально, либо с помощью приборов.

Присмотритесь, как устроен обычный бытовой термометр. Его термометрическое тело - маленький сферический сосуд, соединенный с тонкой трубкой (капилляром). Сосуд заполняется жидкостью (чаще всего ртутью или подкрашенным спиртом). При контакте с горячим или холодным предметом жидкость изменяет свой объём, и соответственно изменяется высота столбика в капилляре. Но для того, чтобы зарегистрировать изменения высоты столбика жидкости необходимо к термометрическому телу приладить ещё и шкалу. Прибор, содержащий термометрическое тело и выбранную определенным образом шкалу, называется термометром . Наибольшее распространение в настоящее время получили термометры со шкалой Цельсия и шалой Кельвина.

Шкала Цельсия устанавливается по двум репéрным (опорным) точкам. Первым репером является тройная точка воды – такие физические условия, при которых три фазы воды (жидкость, газ, твердое тело) находятся в равновесии . Это значит, что масса жидкости, масса кристаллов воды и масса водяных паров остаются при этих условиях неизменными. В такой системе, конечно же, идут процессы испарения и конденсации, кристаллизации и плавления, но они уравновешивают друг друга. Если не нужна очень высокая точность измерения температуры (например, при изготовлении бытовых термометров), первую реперную точку получают, помещая термометрическое тело в тающий при атмосферном давлении снег или лёд. Второй реперной точкой является условия, при которых жидкая вода находится в равновесии со своим паром (проще сказать, точка кипения воды) при нормальном атмосферном давлении. На шкале термометра делаются отметки, соответствующие реперным точкам; интервал между ними делится на сто частей. Одно деление выбранной таким образом шкалы называется градусом Цельсия (˚C). Тройная точка воды принимается за 0 градусов шкалы Цельсия.

Шкала Цельсия получила наибольшее практическое применение в мире; к сожалению, она имеет ряд существенных недостатков. Температура по этой шкале может принимать отрицательные значения, между тем кинетическая энергия и соответственно температура могут быть только положительными. Кроме того, показания термометров со шкалой Цельсия (за исключением реперных точек) зависят от выбора термометрического тела.

Шкала Кельвина лишена недостатков шкалы Цельсия. В качестве рабочего вещества в термометрах со шкалой Кельвина должен использоваться идеальный газ. Шкала Кельвина также устанавливается по двум реперным точкам. Первой реперной точкой являются такие физические условия, при которых прекращается тепловое движение молекул идеального газа. Эта точка принимается в шкале Кельвина за 0. Второй реперной точкой является тройная точка воды. Интервал между реперными точками разделен на 273,15 части. Одно деление выбранной таким образом шкалы называют кельвином (К). Число делений 273,15 выбрано по тем соображениям, чтобы цена деления шкалы Кельвина совпадала с ценой деления шкалы Цельсия, тогда изменение температуры по шкале Кельвина совпадает с изменением температуры по шкале Цельсия; тем самым облегчается переход от показаний одной шкалы к другой. Температура по шкале Кельвина обозначается обычно буквой Т . Связь между температурами t в шкале Цельсия и температурой Т , измеренной в кельвинах, устанавливается соотношениями

и
.

Для перехода от температуры Т , измеренной в К, к температуре Θ в джоулях служит постоянная Больцмана k =1.38·10 -23 Дж/К, она показывает, сколько джоулей приходится на 1 К:

Θ = kT .

Некоторые умники пытаются найти какой-то тайный смысл в постоянной Больцмана; между тем k – самый заурядный коэффициент для пересчёта температуры из кельвинов в джоули.

Обратим внимание читателя на три специфические особенности температуры. Во-первых, она является усреднённым (статистическим) параметром ансамбля частиц. Представьте себе, что вы решили найти средний возраст людей на Земле. Для этого заходим в детский садик , суммируем возраст всех ребятишек и делим эту сумму на число детей. Оказывается, что средний возраст людей на Земле – 3.5 года! Вроде считали-то правильно, а результат получили нелепый. А всё дело в том, что в статистике надо оперировать громадным количеством объектов или событий. Чем выше их количество (в идеале оно должно быть бесконечно большим), тем точней будет значение среднестатистического параметра. Потому понятие температуры применимо только к телам, содержащим громадное количество частиц. Когда журналист в погоне за сенсацией сообщает, что температура частиц, падающих на космический корабль, равна нескольким миллионам градусов, родственникам космонавтов не надо падать в обморок: с кораблем ничего страшного не происходит: просто малограмотный работник пера выдает энергию небольшого количества космических частиц за температуру. А вот если корабль, направляясь на Марс, сбился бы с курса и приблизился бы к Солнцу, тогда – беда: число частиц, бомбардирующий корабль громадное, а температура солнечной короны – 1,5 миллиона градусов.

Во-вторых, температура характеризует тепловое, т.е. неупорядочное движение частиц. В электронном осциллографе картинка на экране рисуется узким, сфокусированным в точку, потоком электронов. Эти электроны проходят некоторую одинаковую разность потенциалов и приобретают примерно одинаковую скорость. Для такого ансамбля частиц грамотный специалист указывают их кинетическую энергию (к примеру, 1500 электрон-вольт), которая, конечно же, не является температурой этих частиц.

Наконец, в-третьих, заметим, что передача теплоты от одного тела к другому может осуществляться не только за счет непосредственного столкновения частиц этих тел, но и за счет поглощения энергии в виде квантов электромагнитного излучения (этот процесс происходит, когда Вы загораете на пляже). Поэтому более общее и точное определение температуры следует сформулировать так:

Температура тела (вещества, системы) – физическая величина, численно равная усреднённой энергии, которую молекула этого

тела передаёт другому макроскопическому объекту за один

элементарный акт взаимодействия с этим объектом .

В заключение, вернёмся к определениям, о которых шла речь в начале этой статьи. Из формулы (2) следует, что если известна температура вещества, то можно однозначно определить среднюю энергию частиц вещества. Таким образом, температура действительно является мерой средней энергии теплового движения молекул или атомов (заметим, кстати, что среднюю энергию частиц определить непосредственно в эксперименте невозможно). С другой стороны кинетическая энергия пропорциональна квадрату скорости; значит, чем больше температура, тем выше скорости молекул, тем интенсивнее их движение. Следовательно, температура является мерилом интенсивности теплового движения частиц. Определения эти, безусловно, приемлемые, но носят они уж слишком общий, чисто качественный характер.

Температура – физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Температура одинакова для всех частей изолированной системы, находящейся в термодинамическом равновесии. Если изолированная термодинамическая система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию температуры во всей системе (нулевое начало термодинамики). В равновесных условиях температура пропорциональна средней кинетической энергии частиц тела.

Температура не может быть измерена непосредственно. Об изменении температуры судят по изменению других физических свойств тел (объёма, давления, электрического сопротивления, эдс, интенсивности излучения и др.), однозначно с ней связанных (так называемых термодинамических свойств). Любой метод измерения температуры связан с определением температурной шкалы.

Методы измерения температуры различны для различных диапазонов измеряемых температур, они зависят от условий измерений и требуемой точности. Их можно разделить на две основные группы: контактные и безконтактные. Для контактных методов характерно то, что прибор, измеряющий температуру среды, должен находиться в тепловом равновесии с ней, т.е. иметь с ней одинаковую температуру. Основными узлами всех приборов для измерения температуры являются чувствительный элемент, где реализуется термометрическое свойство, и измерительный прибор, связанный с элементом.

Согласно молекулярно–кинетической теории идеального газа температура есть величина, характеризующая среднюю кинетическую энергию поступательного движения молекул идеального газа. Учитывая термодинамический смысл температуры, можно свести измерение температуры любого тела к измерению средней кинетической энергии молекул идеального газа.

Однако на практике измеряют не энергию молекул по их скорости, а давление газа, которое находится в прямопропорциональной зависимости от энергии.

По молекулярно–кинетической теории идеального газа температура Т является мерой средней кинетической энергии поступательного движения молекул:

где
Дж/К – постоянная Больцмана;

Т – абсолютная температура в кельвинах.

Основное уравнение молекулярно–кинетической теории идеального газа, устанавливающее зависимость давления от кинетической энергии поступательного движения молекул газа, имеет вид:

, (2)

где – число молекул в единице объёма, т.е. концентрация.

Используя уравнение (1) и (2), получаем зависимость

(3)

между давлением и температурой, которая позволяет установить, что давление идеального газа пропорционально его абсолютной температуре и концентрации молекул, где

(4)

Измерение температуры основано на следующих двух опытных фактах:

а) если имеются два тела, каждое из которых находится в тепловом равновесии с одним и тем же третьем телом, то все три тела имеют одну и ту же температуру;

б) изменение температуры всегда сопровождается непрерывным изменением по меньшей мере одного из параметров, не считая самой температуры, характеризующего состояния тела, например: объём, давление, электропроводность и др. Первое из этих положений позволяет сравнивать температуры различных тел, не приводя их в соприкосновение между собой.

Второе положение позволяет выбрать один из параметров в качестве термометрического.

В общем случае температура определяется как производная от энергии в целом по его энтропии. Так определяемая температура всегда положительная (поскольку кинетическая энергия всегда положительная), её называют температурой или температурой по термодинамической шкале температур и обозначают Т . За единицу абсолютной температуры в системе СИ (Международная система единиц) принят кельвин (К ). См. «Введение». Часто температуру измеряют по шкале Цельсия (
), она связана сТ (К ) равенством

;
(5)

где
– термический коэффициент объёмного расширения газа.

Температура - это просто!

Температура

Температура - это мера средней кинетической энергии молекул.
Температура характеризует степень нагретости тел.

Прибор для измерения температуры - термометр.
Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах - это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Жидкостные термометры

На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35 o С до +750 o С) и спиртовые (от -80 o С до +70 o С).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0 o С и 100 o С).
Этих недостатков лишены газовые термометры.

Газовые термометры

Первый газовый термометр был создан французским физиком Ж. Шарлем.

Преимущества газового термометра:
- используется линейная зависимость изменения объема или давления газа от температуры, которая справедлива для всех газов
- точность измерения от 0,003 o С до 0,02 o С
- интервал температур от -271 o С до +1027 o С.

Тепловое равновесие

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.

Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.
Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.
Установлено, что при тепловом равновесии средние кинетические энергии поступательного движения молекул всех газов одинаковы, т.е.

Для разреженных (идеальных) газов величина

и зависит только от температуры, тогда

где k - постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.

Абсолютная шкала температур

Введена английским физиком У. Кельвином
- нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы - это абсолютный ноль (0К = -273 o С), самая низкая температура в природе. В настоящее время достигнута самая низкая температура - 0,0001К.
По величине 1К равен 1 o C.


Связь абсолютной шкалы со шкалой Цельсия

Запомни! В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

После введения абсолютной температуры получаем новые выражения для формул:

Средняя кинетическая энергия поступательного движения молекул

Давление газа - основное уравнение МКТ

Средняя квадратичная скорость молекул

Температура (в физике) Температура (от лат. temperatura - надлежащее смешение, соразмерность, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Т. одинакова для всех частей изолированной системы, находящейся в равновесии термодинамическом . Если изолированная система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию Т. во всей системе (первый постулат, или нулевое начало термодинамики ). Т. определяет: распределение образующих систему частиц по уровням энергии (см. Больцмана статистика ) и распределение частиц по скоростям (см. Максвелла распределение ); степень ионизации вещества (см. Саха формула ); свойства равновесного электромагнитного излучения тел - спектральную плотность излучения (см. Планка закон излучения ), полную объёмную плотность излучения (см. Стефана - Больцмана закон излучения ) и т. д. Т., входящую в качестве параметра в распределение Больцмана, часто называют Т. возбуждения, в распределение Максвелла - кинетической Т., в формулу Саха - ионизационной Т., в закон Стефана - Больцмана - радиационной температурой . Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы. В кинетической теории газов и др. разделах статистической механики Т. количественно определяется так, что средняя кинетическая энергия поступательного движения частицы (обладающей тремя степенями свободы) равнакТ, где k - Больцмана постоянная , Т - температура тела. В общем случае Т. определяется как производная от энергии тела в целом по его энтропии . Такая Т. всегда положительна (поскольку кинетическая энергия положительна), её называют абсолютной Т. или Т. по термодинамической температурной шкале. За единицу абсолютной Т. в Международной системе единиц (СИ) принят кельвин (К). Часто Т. измеряют по шкале Цельсия (t ), значения t связаны с Т равенством t = Т √ 273,15 К (градус Цельсия равен Кельвину). Методы измерения Т. рассмотрены в статьях Термометрия , Термометр .

Строго определённой Т. характеризуется лишь равновесное состояние тел. Существуют, однако, системы, состояние которых можно приближённо охарактеризовать несколькими не равными друг другу температурами. Например, в плазме, состоящей из лёгких (электроны) и тяжёлых (ионы) заряженных частиц, при столкновении частиц энергия быстро передаётся от электронов к электронам и от ионов к ионам, но медленно от электронов к ионам и обратно. Существуют состояния плазмы, в которых системы электронов и ионов в отдельности близки к равновесию, и можно ввести Т. электронов Тэ и Т. ионов Ти , не совпадающие между собой.

В телах, частицы которых обладают магнитным моментом , энергия обычно медленно передаётся от поступательных к магнитным степеням свободы, связанным с возможностью изменения направления магнитного момента. Благодаря этому существуют состояния, в которых система магнитных моментов характеризуется Т., не совпадающей с кинетической Т., соответствующей поступательному движению частиц. Магнитная Т. определяет магнитную часть внутренней энергии и может быть как положительной, так и отрицательной (см. Отрицательная температура ). В процессе выравнивания Т. энергия передаётся от частиц (степеней свободы) с большей Т. к частицам (степеням свободы) с меньшей Т., если они одновременно положительны или отрицательны, но в обратном направлении, если одна из них положительна, а другая отрицательна. В этом смысле отрицательная Т. «выше» любой положительной.

Понятие Т. применяют также для характеристики неравновесных систем (см. Термодинамика неравновесных процессов ). Например, яркость небесных тел характеризуют яркостной температурой , спектральный состав излучения - цветовой температурой и т. д.

Л. Ф. Андреев.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Температура (в физике)" в других словарях:

    - … Википедия

    ТЕМПЕРАТУРА, в биологии интенсивность тепла. У теплокровных (ГОМОЙОТЕРМНЫХ) животных, таких, как птицы и млекопитающие, температура тела поддерживается в узких пределах независимо от температуры окружающей среды. Это обусловлено мышечной… … Научно-технический энциклопедический словарь

    Размерность Θ Единицы измерения СИ К … Википедия

    Температура кипения, точка кипения температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения соответствует температуре насыщенного пара над плоской поверхностью кипящей жидкости, так как … Википедия

    Главнейшим элементом, характеризующим погоду, является Т. газовой среды, окружающей земную поверхность, правильнее Т. того слоя воздуха, который подлежит нашему наблюдению. При метеорологических наблюдениях этому элементу и отводится первое место … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    температура - 1) Величина, характеризующая физ.тела в состоянии теплового равновесия, связана с интенсивностью теплового движения частей тела; 2) степень теплоты человеческого тела как показатель здоровья; разг. повышенная степень теплоты тела при… … Историко-этимологический словарь латинских заимствований

    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

    Температура, характеризующая равновесные состояния термодинамической системы, в которых вероятность обнаружить систему в микросостоянии с более высокой энергией выше, чем в микросостоянии с более низкой. В квантовой статистике это значит, что… … Википедия


Поделиться: