Умзч на полевых транзисторах своими руками. Усилитель мощности на полевых транзисторах мосфит

УМЗЧ с комплиментарными полевыми транзисторами

Представляем читателям вариант стоваттного УМЗЧ с полевыми транзисторами. В этой конструкции корпусы мощных транзисторов можно монтировать на общем теплоотводе без изоляционных прокладок, и это существенно улучшает теплопередачу. В качестве второго варианта блока питания предложен мощный импульсный преобразователь, который должен иметь достаточно малый уровень собственных помех.

Применение полевых транзисторов (ПТ) в УМЗЧ до недавних пор сдерживалось скудным ассортиментом комплементарных транзисторов, а также их низким рабочим напряжением. Качество звуковоспроизведения через УМЗЧ на ПТ часто оценивают на уровне ламповых и даже выше за то, что по сравнению с усилителями на биполярных транзисторах они создают меньшие нелинейные и интермодуляционные искажения, а также имеют более плавное нарастание искажений при перегрузках. Они превосходят ламповые усилители как по демпфированию нагрузки, так и по ширине рабочей полосы звуковых частот. Частота среза таких усилителей без ООС значительно выше, чем у УМЗЧ на биполярных транзисторах, что благоприятно сказывается на всех видах искажений.

Нелинейные искажения в УМЗЧ вносит в основном выходной каскад, и для их уменьшения обычно используют общую ООС. Искажения во входном дифференциальном каскаде, используемом как сумматор сигналов от источника и цепи общей ООС, могут быть и невелики, но с помощью общей ООС снизить их невозможно

Перегрузочная способность дифференциального каскада на полевых транзисторах примерно в 100...200 раз выше, чем с биполярными транзисторами.

Применение полевых транзисторов в выходном каскаде УМЗЧ позволяет отказаться от традиционных двух-и трехкаскадных повторителей по схеме Дарлингтона с присущими им недостатками.

Хорошие результаты дает использование в выходном каскаде полевых транзисторов со структурой металл-диэлектрик-полупроводник (МДП). В связи с тем, что управление током в выходной цепи осуществляется входным напряжением (аналогично электровакуумным приборам), то при больших токах быстродействие каскада на полевых МДП-транзисторах в режиме переключения достаточно высокое (τ = 50 нс). Такие каскады обладают хорошими передаточными свойствами на высоких частотах и имеют эффект температурной самостабилизации.

К достоинствам полевых транзисторов относятся:

  • малая мощность управления в статическом и динамическом режимах;
  • отсутствие теплового пробоя и слабая подверженность вторичному пробою;
  • термостабилизация тока стока, обеспечивающая возможность параллельного включения транзисторов;
  • передаточная характеристика близка к линейной или квадратичной;
  • высокое быстродействие в режиме переключения, благодаря чему снижаются динамические потери;
  • отсутствие явления накопления избыточных носителей в структуре;
  • малый уровень шумов,
  • малые габариты и масса, большой срок службы.

Но кроме достоинств, эти приборы имеют и недостатки:

  • выход из строя при электрических перегрузках по напряжению;
  • возможно возникновение искажений термического происхождения на низких частотах (ниже 100 Гц). На этих частотах сигнал изменяется так медленно, что за один полупериод температура кристалла успевает измениться и, следовательно, изменяются пороговое напряжение и крутизна транзисторов.

Последний из отмеченных недостатков ограничивает выходную мощность, особенно при низких напряжениях питания; выход из положения - параллельное включение транзисторов и введение ООС.

Следует отметить, что в последнее время зарубежными фирмами (например, Exicon и др.) разработано немало полевых транзисторов, пригодных для аудиоаппаратуры: EC-10N20, 2SK133-2SK135, 2SK175, 2SK176 с каналом п-типа; ЕС-10Р20, 2SJ48- 2SJ50, 2SJ55, 2SJ56 с каналом р-типа. Такие транзисторы отличаются слабой зависимостью крутизны (forward transfer admitance) от тока стока и сглаженными выходными ВАХ

Параметры некоторых полевых транзисторов, в том числе и производства Минского производственного объединения "Интеграл", приведены в табл. 1.

Большинство транзисторных бестрансформаторных УМЗЧ выполнены по полумостовой схеме. При этом нагрузка включается в диагональ моста, образованного двумя источниками питания и двумя выходными транзисторами усилителя (рис. 1).

Когда комплементарных транзисторов не было, выходной каскад УМЗЧ выполняли преимущественно на транзисторах одинаковой структуры с нагрузкой и источником питания, соединенными с общим проводом (рис. 1 ,а) Два возможных варианта управления выходными транзисторами представлены на рис. 2.

В первом из них (рис. 2,а) управление нижним плечом выходного каскада оказывается в более выгодных условиях. Так как изменение напряжения питания мало, эффект Миллера (динамическая входная емкость) и эффект Эрли (зависимость тока коллектора от напряжения эмиттер-коллектор) практически не проявляются. Цепь управления верхним плечом включена здесь последовательно с самой нагрузкой, поэтому без принятия дополнительных мер (например, каскодного включения приборов) указанные эффекты проявляются в значительной степени. По этому принципу был разработан ряд удачных УМЗЧ .

По второму варианту (рис. 2,6 - такой структуре больше соответствуют МДП-транзисторы) также был разработан ряд УМЗЧ, например . Однако и в таких каскадах трудно обеспечить, даже с применением генераторов тока , симметрию управления выходными транзисторами. Другой пример симметрирования по входному сопротивлению - выполнение плеч усилителя по квазикомплементарной схеме или применение комплементарных транзисторов (см. рис. 1 ,б) в .

Стремление к симметрированию плеч выходного каскада усилителей, выполненных на транзисторах одной проводимости, привело к разработке усилителей с незаземленной нагрузкой по схеме рис. 1 ,г . Однако и здесь не удается добиться полной симметрии предыдущих каскадов. Цепи отрицательной ОС с каждого плеча выходного каскада неравнозначны; цепи ООС этих каскадов контролируют напряжение на нагрузке по отношению к выходному напряжению противоположного плеча. Кроме того, такое схемотехническое решение требует изолированных источников питания. Из-за перечисленных недостатков оно не нашло широкого применения.

С появлением комплементарных биполярных и полевых транзисторов выходные каскады УМЗЧ преимущественно строят по схемам рис. 1 ,б, в. Однако и в этих вариантах для раскачки выходного каскада необходимо применять высоковольтные приборы. Транзисторы предвыходного каскада работают с большим коэффициентом усиления по напряжению, а поэтому подвержены эффектам Миллера и Эрли и без общей ООС вносят значительные искажения, что требует от них высоких динамических характеристик. Питание предварительных каскадов повышенным напряжением снижает и КПД усилителя.

Если в рис. 1 ,б, в перенести точку соединения с общим проводом в противоположное плечо диагонали моста, получим варианты на рис. 1,д и 1,е соответственно. В структуре каскада по схеме рис. 1 ,е автоматически решается проблема изоляции выходных транзисторов от корпуса. Усилители, выполненные по таким схемам, свободны от ряда перечисленных недостатков.

Особенности схемотехники усилителя

Вниманию радиолюбителей предлагается инвертирующий УМЗЧ (рис. 3), соответствующий структурной схеме выходного каскада на рис. 1 ,е.

(нажмите для увеличения)

Входной дифференциальный каскад выполнен на полевых транзисторах (VT1, VT2 и DA1) по симметричной схеме. Их преимущества в дифференциальном каскаде общеизвестны: высокие линейность и перегрузочная способность, малые шумы. Применение полевых транзисторов существенно упростило этот каскад, так как отпала необходимость в генераторах тока. Для увеличения коэффициента усиления с разомкнутой петлей ОС сигнал снимается с обоих плеч дифференциального каскада, а перед последующим усилителем напряжения установлен эмиттерный повторитель на транзисторах VT3, VT4.

Второй каскад выполнен на транзисторах VT5-VT10 по комбинированной каскодной схеме со следящим питанием. Такое питание каскада с ОЭ нейтрализует в транзисторе входную динамическую емкость и зависимость тока коллектора от напряжения эмиттер-коллектор. В выходной ступени этого каскада применены высокочастотные БСИТ-транзисторы, которые по сравнению с биполярными (КП959 против КТ940) имеют вдвое большую граничную частоту и вчетверо меньшую емкость стока (коллектора).

Использование выходного каскада с питанием от отдельных изолированных источников позволило обойтись низковольтным питанием (9 В) для предварительного усилителя.

Выходной каскад выполнен на мощных МДП-транзисторах, причем выводы их стока (и теплоот-водящие фланцы корпусов) соединены с общим проводом, что упрощает конструкцию и сборку усилителя.

Мощные МДП-транзисторы, в отличие от биполярных, имеют меньший разброс параметров, что облегчает их параллельное включение. Основной разброс токов между приборами возникает из-за неравенства пороговых напряжений и разброса входных емкостей. Введение дополнительных резисторов сопротивлением 50 200 Ом в цепи затворов обеспечивает практически полное выравнивание задержек включения и выключения и устраняет разброс токов при переключении.

Все каскады усилителя охвачены местной и общей ООС.

Основные технические характеристики

  • С разомкнутой ООС (R6 заменен на 22 МОм, С4 исключен)
  • Частота среза, кГц......300
  • Коэффициент усиления по напряжению, дБ......43
  • Коэффициент гармоник в режиме АВ, %, не более......2

С включенной ООС

  • Выходная мощность, Вт на нагрузке 4 Ом......100
  • на нагрузке 8 Ом......60
  • Диапазон воспроизводимых частот, Гц......4...300000
  • Коэффициент гармоник, %, не более......0,2
  • Номинальное входное напряжение, В......2
  • Ток покоя выходного каскада, А......0,15
  • Входное сопротивление, кОм.....24

Благодаря тому что частота среза усилителя с разомкнутой цепью ООС относительно высока, глубина обратной связи и коэффициент гармоник во всей полосе воспроизводимых частот практически постоянны.

Снизу полоса рабочих частот УМЗЧ ограничена емкостью конденсатора С1, сверху - С4 (при емкости 1,5 пф частота среза равна 450 кГц).

Конструкция и детали

Усилитель выполнен на плате из двусторонне фольгированного стеклотекстолита (рис.4).

Плата со стороны установки элементов максимально заполнена фольгой, соединенной с общим проводом. Транзисторы VT8, VT9 снабжены небольшими пластинчатыми теплоотводами в виде "флажка". В отверстия для выводов стока мощных полевых транзисторов установлены пистоны; выводы стока транзисторов VT11, VT14 соединены с общим проводом со стороны фольги (на рисунке отмечены крестами).

В отверстия 5 -7 платы для подключения выводов сетевого трансформатора и отверстия для перемычек установлены пистоны. Резисторы R19, R20, R22, R23 выполнены из манганинового провода диаметром 0,5 и длиной 150 мм. Для подавления индуктивности провод складывают пополам и в сложенном виде (бифилярно) наматывают на оправке диаметром 4 мм.

Катушку индуктивности L1 наматывают проводом ПЭВ-2 0,8 виток к витку по всей поверхности резистора мощностью 2 Вт (МЛТ или аналогичный).

Конденсаторы С1, С5, С10, С11 - К73-17, причем С10 и С11 распаяны со стороны печатного монтажа на выводы конденсаторов С8 и С9. Конденсаторы С2, C3 - оксидные К50-35; конденсатор С4 - К10-62 или КД-2; С12 - К10-17 или К73-17.

Полевые транзисторы с каналом n-типа (VT1, VT2) нужно подобрать с примерно таким же начальным током стока, как и у транзисторов в сборке DA1. По напряжению отсечки они не должны отличаться более чем на 20 %. Микросборку DA1 К504НТЗБ можно заменить К504НТ4Б. Возможно применение подобранной пары транзисторов КП10ЗЛ (также с индексами Г, М, Д); КП307В - КП307Б (также А, Е), КП302А либо транзисторной сборки КПC315А, КПC315Б (в этом случае плату придется переработать).

В позициях VT8, VT9 можно также использовать комплементарные транзисторы серий КТ851, КТ850, а также КТ814Г, КТ815Г (с граничной частотой 40 МГц) Минского объединения "Интеграл".

Помимо указанных в таблице, можно использовать, например, следующие пары МДП транзисторов: IRF530 и IRF9530; 2SK216 и 2SJ79; 2SK133- 2SK135 и 2SJ48-2SJ50; 2SK175- 2SK176 и 2SJ55-2SJ56.

Для стереофонического варианта питание на каждый из усилителей подают от отдельного трансформатора, желательно с кольцевым или стержневым (ПЛ) магнитопроводом, мощностью 180...200 Вт. Между первичной и вторичными обмотками размещают слой экранирующей обмотки проводом ПЭВ-2 0,5; один из выводов ее соединяют с общим проводом. Выводы вторичных обмоток подводят к плате усилителя экранированным проводом, а экран соединяют с общим проводом платы. На одном из сетевых трансформаторов размещают обмотки для выпрямителей предварительных усилителей. Стабилизаторы напряжения выполнены на микросхемах IL7809AC (+9 В), IL7909AC (-9 В) - на схеме не показаны. Для подачи на плату питания 2x9 В использован соединитель ОНп-КГ-26-3 (XS1).

При налаживании оптимальный ток дифференциального каскада устанавливают подстроенным резистором R3 по минимуму искажений на максимальной мощности (примерно в середине рабочего участка). Резисторы R4, R5 рассчитаны на ток около 2...3 мА в каждом плече при начальном токе стока около 4...6 мА. При меньшем начальном токе стока сопротивление указанных резисторов необходимо пропорционально увеличить.

Ток покоя выходных транзисторов в интервале 120... 150 мА устанавливают подстроечным резистором R3, а при необходимости подбором резисторов R13, R14.

Импульсный блок питания

Тем радиолюбителям, кто испытывает трудности с приобретением и намоткой больших сетевых трансформаторов, для выходных каскадов УМЗЧ предлагается импульсный блок питания. Питание предварительного усилителя в этом случае можно осуществлять от маломощного стабилизированного БП.

Импульсный БП (его схема показана на рис. 5) представляет собой нерегулируемый автогенераторный полумостовой инвертор. Применение пропорционально-токового управления транзисторами инвертора в сочетании с насыщающимся коммутирующим трансформатором позволяет к моменту переключения автоматически выводить активный транзистор из насыщения. Это уменьшает время рассасывания заряда в базе и исключает сквозной ток, а также снижает потери мощности в цепях управления, повышая надежность и КПД инвертора.

Технические характеристики ИБП

  • Выходная мощность, Вт, не более......360
  • Выходное напряжение......2x40
  • КПД, %, не менее......95
  • Частота преобразования, кГц......25

На входе сетевого выпрямителя установлен помехоподавляющии фильтр L1C1C2. Резистор R1 ограничивает бросок тока зарядки конденсатора C3. Последовательно с резистором на плате предусмотрена перемычка Х1, вместо которой можно включить дроссель для улучшения фильтрации и увеличения "жесткости" выходной нагрузочной характеристики.

Инвертор имеет два контура положительной ОС: первый - по напряжению (с помощью обмоток II в трансформаторе Т1 и III - в Т2); второй - по току (с трансформатором тока: виток 2-3 и обмотки 1-2, 4-5 трансформатора Т2).

Устройство запуска выполнено на однопереходном транзисторе VT3. После запуска преобразователя оно отключается благодаря наличию диода VD15, так как постоянная времени цепи R6C8 значительно больше периода преобразования.

Особенность инвертора в том, что при работе низковольтных выпрямителей на большие емкости фильтра он нуждается в плавном запуске. Плавному запуску блока способствуют дроссели L2 и L3 и в некоторой степени резистор R1.

Блок питания выполнен на печатной плате из односторонне фольгированного стеклотекстолита толщиной 2 мм. Чертеж платы показан на рис. 6.

(нажмите для увеличения)

Намоточные данные трансформаторов и сведения о магнитопроводах приведены в табл. 2. Все обмотки выполнены проводом ПЭВ-2.

Перед намоткой трансформаторов острые кромки колец необходимо притупить наждачной бумагой или бруском и обмотать лакотканью (для Т1 - сложенные вместе кольца тремя слоями). Если этой предварительной обработки не сделать, то не исключено продавливание лакоткани и замыкание витков провода на магнитопровод. В результате резко возрастет ток холостого хода и разогреется трансформатор. Между обмотками 1-2, 5-6-7 и 8-9-10 наматывают проводом ПЭВ-2 0,31 в один слой виток к витку экранирующие обмотки, один конец которых (Э1, Э2) соединяют с общим проводом УМЗЧ.

Обмотка 2-3 трансформатора Т2 представляет собой виток из провода диаметром 1 мм поверх обмотки 6-7, впаянный концами в печатную плату.

Дроссели L2 и L3 выполнены на броневых магнитопроводах БЗО из феррита 2000НМ. Обмотки дросселей намотаны в два провода до заполнения каркаса проводом ПЭВ-2 0,8. Учитывая, что дроссели работают с подмагничиванием постоянным током, между чашками необходимо вставить прокладки из немагнитного материала толщиной 0,3 мм.

Дроссель L1 - типа Д13-20, его можно выполнить также на броневом магнитопроводе Б30 аналогично дросселям L2, L3, но без прокладки, намотав обмотки в два провода МГТФ-0,14 до заполнения каркаса.

Транзисторы VT1 и VT2 закреплены на теплоотводах из ребристого алюминиевого профиля с размерами 55x50x15 мм через изолирующие прокладки. Вместо указанных на схеме можно использовать транзисторы КТ8126А Минского ПО "Интеграл", а также MJE13007. Между выходами БП +40 В, -40 В и "своей" средней точкой (СТ1 и СТ2) подключены дополнительные оксидные конденсаторы К50-6 (на схеме не показаны) емкостью по 2000 мкФ на 50 В. Эти четыре конденсатора установлены на текстолитовой пластине размерами 140x100 мм, закрепленной винтами на теплоотводах мощных транзисторов.

Конденсаторы С1, С2 - К73-17 на напряжение 630 В, C3 - оксидный К50-35Б на 350 В, С4, С7 - К73-17 на 250 В, С5, С6 - К73-17 на 400 В, С8 - К10-17.

Импульсный БП подключают к плате УМ в непосредственной близости к выводам конденсаторов С6-С11. В этом случае диодный мост VD5-VD8 на плате УМ не монтируют.

Для задержки подключения акустических систем к УМЗЧ на время затухания переходных процессов, возникающих во время включения питания, и отключения АС при появлении на выходе усилителя постоянного напряжения любой полярности можно использовать простейшее или более сложное защитное устройство.

Литература

  1. Хлупнов А. Любительские усилители низкой частоты. -М.: Энергия, 1976, с. 22.
  2. Акулиничев И. Усилитель НЧ с синфазным стабилизатором режима. - Радио, 1980, № З.с.47.
  3. Гаревских И. Широкополосный усилитель мощности. - Радио, 1979, № 6. с. 43.
  4. Колосов В. Современный любительский магнитофон. - М.: Энергия, 1974.
  5. Борисов С. МДП-транзисторы в усилителях НЧ. - Радио. 1983, № 11, с. 36-39.
  6. Дорофеев М. Режим В в усилителях мощности ЗЧ. - Радио, 1991, № 3, с. 53.
  7. Сырицо А. Мощный усилитель НЧ. - Радио, 1978. № 8, с. 45-47.
  8. Сырицо А. Усилитель мощности на интегральных ОУ. - Радио, 1984, № 8, с. 35-37.
  9. Якименко Н. Полевые транзисторы в мостовом УМЗЧ. - Радио. 1986, № 9, с. 38, 39.
  10. Виноградов В. Устройство защиты АС. - Радио, 1987, № 8. с. 30.

Старое, но золотое

Старое, но золотое

Схемотехника усилителей уже прошла в своем развитии виток спирали и сейчас мы наблюдаем "ламповый ренессанс". В соответствии с законами диалектики, которые нам так упорно вдалбливали, следом должен наступить "ренессанс транзисторный". Сам факт этого неизбежен, ибо лампы, при всей своей красоте, уж очень неудобны. Даже дома. Но у транзисторных усилителей накопились свои недостатки...
Причину "транзисторного" звучания объяснили еще в середине 70-х - глубокая обратная связь. Она порождает сразу две проблемы. Первая - переходные интермодуляционные искажения (TIM-искажения) в самом усилителе, вызванные запаздыванием сигнала в петле обратной связи. С этим бороться можно только одним путем - увеличением быстродействия и усиления исходного усилителя (без обратной связи), что чревато серьезным усложнением схемы. Результат трудно прогнозируется: то ли будет, то ли нет.
Вторая проблема - глубокая обратная связь сильно снижает выходное сопротивление усилителя. А это для большинства громкоговорителей чревато возникновением тех самых интермодуляционных искажений прямо в динамических головках. Причина - при перемещении катушки в зазоре магнитной системы значительно изменяется ее индуктивность, поэтому импеданс головки тоже изменяется. При низком выходном сопротивлении усилителя это приводит к дополнительным изменениям тока через катушку, что и порождает неприятные призвуки, ошибочно принимаемые за искажения усилителя. Этим же можно объяснить парадоксальный факт, что при произвольном выборе динамиков и усилителей один комплект "звучит", а другой - "не звучит".

секрет лампового звука =
высокое выходное сопротивление усилителя
+ неглубокая обратная связь
.
Однако аналогичных результатов можно добиться и с транзисторными усилителями. Все приводимые ниже схемы объединяет одно - нетрадиционная и позабытая нынче "несимметричная" и "неправильная" схемотехника. Однако так ли она плоха, как ее представляют? Например, фазоинвертор с трансформатором - настоящий Hi-End! (рис.1) А фазоинвертор с разделенной нагрузкой (рис.2) заимствован из ламповой схемотехники...
рис.1


рис.2


рис.3

Эти схемы сейчас незаслуженно забыты. А зря. На их основе, используя современную элементную базу, можно создать простые усилители с весьма высоким качеством звучания. Во всяком случае, то, что мне доводилось собирать и слушать, звучало достойно - мягко и "вкусно". Глубина обратных связей во всех схемах невелика, есть местные ООС, а выходное сопротивление значительно. Нет и общей ООС по постоянному току.

Однако приведенные схемы работают в классе B , поэтому им присущи "переключательные" искажения. Для их устранения необходима работа выходного каскада в "чистом" классе A . И такая схема тоже появилась. Автор схемы - J.L.Linsley Hood. Первые упоминания в отечественных источниках относятся ко второй половине 70-х годов.


рис.4

Основной недостаток усилителей класса A , ограничивающий область их применения - большой ток покоя. Однако для устранения переключательных искажений есть и другой путь - использование германиевых транзисторов. Их достоинство - малые искажения в режиме B . (Когда-нибудь я напишу сагу, посвященную германию.) Другой вопрос, что найти сейчас эти транзисторы непросто, да и выбор ограничен. При повторении следующих конструкций нужно помнить, что термостойкость германиевых транзисторов невысока, поэтому не нужно экономить на радиаторах для выходного каскада.


рис.5
На этой схеме - интересный симбиоз германиевых транзиcторов с полевым. Качество звучания, несмотря на более чем скромные характеристики, очень хорошее. Чтобы освежить впечатления четвертьвековой давности, я не поленился собрать конструкцию на макете, слегка модернизировав ее под современные номиналы деталей. Транзистор МП37 можно заменить кремниевым КТ315, поскольку при налаживании все равно придется подбирать сопротивление резистора R1. При работе с нагрузкой 8 Ом мощность возрастет примерно до 3,5 Вт, емкость конденсатора C3 придется увеличить до 1000 мкФ. А для работы с нагрузкой 4 Ом придется снизить напряжение питания до 15 вольт, чтобы не превысить максимальную мощность рассеяния транзисторов выходного каскада. Поскольку общая ООС по постоянному току отсутствует, термостабильность достаточна только для работы в домашних условиях.
Две следующие схемы имеют интересную особенность. Транзисторы выходного каскада по переменному току включены по схеме с общим эмиттером, поэтому требуют небольшого напряжения возбуждения. Не требуется и традиционная вольтодобавка. Однако для постоянного тока они включены по схеме с общим коллектором, поэтому для питания выходного каскада использован "плавающий" источник питания, не связанный с "землей". Поэтому для выходного каскада каждого канала необходимо использовать отдельный источник питания. В случае применения импульсных преобразователей напряжения это не проблема. Источник питания предварительных каскадов может быть общим. Цепи ООС по постоянному и переменному току разделены, что в сочетании с цепью стабилизации тока покоя гарантирует высокую термостабильность при малой глубине ООС по переменному току. Для СЧ/ВЧ каналов - прекрасная схема.

рис.6


рис.7 Автор: А.И.Шихатов (составление и комментарии) 1999-2000
Опубликовано: сборник "Конструкции и схемы для прочтения с паяльником" М. Солон-Р, 2001, с.19-26.
  • Схемы 1,2,3,5 были опубликованы в журнале "Радио".
  • Схема 4 позаимствована из сборника
    В.А.Васильев "Зарубежные радиолюбительские конструкции" М.Радио и связь,1982, с.14...16
  • Схемы 6 и 7 позаимствованы из сборника
    Й. Боздех "Конструирование дополнительных устройств к магнитофонам" (пер. с чешск.) М.Энергоиздат 1981, с.148,175
  • Подробно о механизме возникновения интермодуляционных искажений: Должен ли УМЗЧ иметь малое выходное сопротивление?
Оглавление

УМЗЧ на полевых транзисторах

УМЗЧ на полевых транзисторах

Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы. Передаточная характеристика полевых транзисторов близка к линейной или квадратичной, поэтому в спектре выходного сигнала практически отсутствуют четные гармоники, кроме того, происходит быстрый спад амплитуды высших гармоник (как в ламповых усилителях). Это позволяет применять в усилителях на полевых транзисторах неглубокую отрицательную обратную связь или вовсе отказаться от нее. После завоевания просторов "домашнего" Hi-Fi полевые транзисторы начали наступление на автозвук. Публикуемые схемы изначально предназначались для домашних систем, но может, кто-то рискнет применить заложенные в них идеи в автомобиле...


рис.1
Эта схема уже считается классической. В ней выходной каскад, работающий в режиме AB, выполнен на МДП-транзисторах, а предварительные каскады - на биполярных. Усилитель обеспечивает достаточно высокие показатели, но для дальнейшего улучшения качества звучания биполярные транзисторы следует полностью исключить из схемы (следующая картинка).


рис.2
После того, как исчерпаны все резервы повышения качества звучания, остается только одно - однотактный выходной каскад в "чистом" классе А. Ток, потребляемый предварительными каскадами от источника более высокого напряжения и в этой, и предыдущей схеме - минимален.


рис.3
Выходной каскад с трансформатором - полный аналог ламповых схем. Это на закуску... Интегральный источник тока CR039 задает режим работы выходного каскада.


рис.4
Однако широкополосный выходной трансформатор - достаточно сложный в изготовлении узел. Изящное решение - источник тока в цепи стока - предложено фирмой

Низкочастотные усилители очень популярны среди любителей радиоэлектроники. В отличии от предыдущей схемы , данный усилитель мощности на полевых транзисторах состоит в основном из транзисторов и использует выходной каскад на , которые при двухполярном напряжении питания в 30 вольт могут обеспечить на динамиках сопротивлением 4 Ом выходную мощность до 70 Вт.

Принципиальная схема усилителя на полевых транзисторах

Усилитель собран на базе операционного усилителя TL071 (IO1) или любой аналогичный ему, который создает основное усиление дифференциального сигнала. Усиленный низкочастотный сигнал с выхода операционного усилителя, большая часть которого поступает через R3 к средней точке. Оставшаяся часть сигнала достаточна для прямого усиления на MOSFET IRF9530 (T4) и IRF530 (T6).

Транзисторы T2 ,T3 и окружающие их компоненты служат для стабилизации рабочей точки переменного резистора, так как она должна быть правильно установлена в симметрии каждой полуволны на нагрузке усилителя.

Все детали собраны на односторонней печатной плате. Обратите внимание, что на плате необходимо установить три перемычки.


Настройка усилителя

Настройку усилителя лучше всего сделать путем подачи синусоидального сигнала на его вход и подключением нагрузочного резистора со значением 4 Ом. После этого резистор R12 устанавливается таким образом, чтобы на выходе усилителя сигнал был симметричным, т.е. форма и размер положительной и отрицательной полуволн были одинаковыми при максимальной громкости.

В последнее время конструкторы усилителей мощности низкой частоты всё чаще обращаются к ламповой схемотехнике, которая позволяет при сравнительной простоте конструкции достигать хорошего звучания. Но не следует полностью "списывать" транзисторы, поскольку при определенных обстоятельствах транзисторный УМЗЧ все-таки способен работать довольно неплохо, а часто и лучше ламп... Автору этой статьи довелось перепробовать большое количество УМЗЧ. Один из таких наиболее удачных "биполярных" вариантов и предлагается на суд читателей. В основе идеи хорошей работы лежит условие симметричности обоих плеч УМЗЧ. Когда обе полуволны усиливаемого сигнала претерпевают подобные преобразовательные процессы, можно ожидать удовлетворительной работы УМЗЧ в качественном отношении.

Еще в недалеком прошлом непременным и достаточным условием хорошей работы любого УМЗЧ считалось обязательным введение глубоких ООС. Бытовало мнение о невозможности создания высококачественных УМЗЧ без глубоких общих ООС. К тому же авторы конструкций убедительно уверяли, что, мол, нет необходимости в подборе транзисторов для работы их в парах (плечах), ООС все скомпенсирует и разброс транзисторов по параметрам на качество звуковоспроизведения не влияет!

Эпоха УМЗЧ, собранных на транзисторах одной проводимости, например, популярных КТ808. предполагала включение выходных транзисторов УМЗЧ уже неравноправно, когда один транзистор выходного каскада был включен по схеме с ОЭ, второй же - с ОК. Такое асимметричное включение не способствовало качественному усилению сигнала. С приходом КТ818, КТ819, КТ816. КТ817 и др., казалось бы, проблема линейности УМЗЧ решена. Но перечисленные комплементарные пары транзисторов "по жизни" слишком далеки от истинной комплементарности.

Не будем углубляться в проблемы некомплементарности вышеперечисленных транзисторов, которые весьма широко используются в различных УМЗЧ. Следует лишь подчеркнуть тот факт. что при равных условиях (режимах) этих транзисторов обеспечить их комплементарную работу в двухтактных усилительных каскадах достаточно сложно. Хорошо об этом сказано в книге Н.Е.Сухова .

Я вовсе не отрицаю возможность достижения хороших результатов при создании УМЗЧ на комплементарных транзисторах. Для этого нужен современный подход в схемотехнике таких УМЗЧ, с обязательным тщательным подбором транзисторов для работы в парах (ключах). Доводилось мне конструировать и такие УМЗЧ, которые являются своеобразными продолжениями высококачественного УМЗЧ Н.Е.Сухова , но о них - как нибудь в другой раз. Касаясь симметричности УМЗЧ, как главного условия хорошей его работы - следует сказать следующее. Оказалось, что более высокими качественными параметрами обладает УМЗЧ, собранный по действительно симметричной схеме и непременно на транзисторах одинакового типа (с обязательной подборкой экземпляров). Подбирать же транзисторы намного легче, если они из одной партии. Обычно экземпляры транзисторов из одной партии имеют довольно близкие параметры против "случайно" приобретенных экземпляров. Из опыта можно сказать, что из 20 шт. транзисторов (стандартное количество одной пачки) почти всегда можно отобрать две пары транзисторов для стереокомплекса УМЗЧ. Были случаи и более "удачного улова" - по четыре пары из 20 штук. О подборе транзисторов расскажу несколько позже.

Принципиальная схема УМЗЧ изображена на рис.1. Как видно из схемы, она довольно простая. Симметричность обоих плеч усилителя обеспечена симметричностью включений транзисторов

.

Известно, что дифференциальный каскад обладает многими преимуществами перед обычными двухтактными схемами. Не углубляясь в теорию, следует подчеркнуть, что в данной схеме заложено правильное "токовое" управление биполярными транзисторами. Транзисторы дифференциального каскада обладают повышенным выходным сопротивлением (намного большим традиционной "раскачки" по схеме с ОК), поэтому их можно рассматривать как генераторы тока (источники тока). Таким образом реализуется токовый принцип управления выходными транзисторами УМЗЧ. Очень точно сказано о влиянии согласования по сопротивлениям между транзисторными каскадами на уровень нелинейных искажений в : "Известно, что нелинейность входной характеристики транзистора I б =f(U бэ) в наибольшей степени проявляется тогда, когда усилительный каскад работает от генератора напряжения, т.е. выходное сопротивление предыдущего каскада меньше входного сопротивления последующего. В этом случае выходной сигнал транзистора - ток коллектора или эмиттера - аппроксимируется экспоненциальной функцией напряжения база эмиттер U бэ, а коэффициент гармоник порядка 1% достигается при величине этого напряжения, равном всего 1 мВ (!). Это объясняет причины возникновения искажений во многих транзисторных УМЗЧ. Очень жаль. что этому факту практически никто не уделяет должного внимания. Что уж там, транзисторы "умирают" в УМЗЧ (как динозавры?!), словно нет никакого выхода из сложившихся обстоятельств, кроме как применения ламповых схем...

Но прежде чем приступить к намотке трудоемкого выходного трансформатора, стоит все-таки повозиться и с симметричной транзисторной схемой УМЗЧ. Забегая вперед, скажу еще о том, что по аналогичной схемотехнике были собраны и УМЗЧ на полевых транзисторах, об этом поговорим как-нибудь в другой раз.

Еще одна особенность схемы рис.1 - это повышенное (по сравнению с традиционными УМЗЧ) количество источников питания. Не следует этого бояться, поскольку емкости фильтрующих конденсаторов попросту разделяются на два канала в равной степени. А разделение источников питания в каналах УМЗЧ лишь улучшают параметры стереокомплекса в целом. Напряжения источников E1 и E2 не стабилизированы, а в качестве EЗ необходимо использовать стабилизатор напряжения (40 вольт).

Говоря о теоретических проблемах двухтактных схем и транзисторных УМЗЧ вообще, необходимо проанализировать еще один каскад (или несколько таковых каскадов) - фазоинвертор. Продолжительные эксперименты подтверждают факт существенного ухудшения качества звуковоспроизведения из-за этих каскадов. Собрав совершенно симметричную схему, да еще и с кропотливо подобранными деталями, приходится столкнуться с проблемой схем фазоинверторов. Было установлено, что эти каскады способны вносить очень большие искажения (различие формы синусоиды для полуволн можно было наблюдать на экране осциллографа даже без использования каких-либо дополнительных схем). Сказанное в полной мере относится и к простым схемам ламповых вариантов усилителей-фазоинверторов. Вы подбираете номиналы в схеме с тем, чтобы получить равенство амплитуд обеих полуволн (синусоиды) противофазного сигнала по высококлассному цифровому вольтметру, а субъективная экспертиза требует (на слух!) поворота движков подстроечных резисторов в сторону от этого "приборного" способа регулировки уровней.

Всматриваясь в форму синусоиды на экране осциллографа, удается увидеть "интересные" искажения - на одном выходе фазоинвертора они шире (по оси частот), на другом - "тоньше", т.е. площадь фигуры синусоид различна для прямого и фазоинверсного сигналов. Слух это четко улавливает, приходится "разрегулировать" настройку. Выравнивать же синусоиду в фазоинверсных каскадах глубокими ООС крайне нежелательно. Устранять нужно причины асимметрии в этих каскадах другими схемотехническими путями, в противном случае фазоинверсный каскад может вносить весьма заметные на слух "транзисторные" искажения, уровень которых будет сопоставим с искажениями выходного каскада УМЗЧ (!). Вот так и случается, что фазоинвертор является основным узлом асимметрии для любых двухтактных УМЗЧ (будь-то транзисторных, ламповых или комбинированных схем УМЗЧ), если, конечно же, усилительные элементы в плечах заранее отобраны с близкими параметрами, иначе нет смысла вообще ожидать от таких схем хорошего звучания.

Из самых простых в реализации фазоинверсных схем, которые хорошо работают, являются ламповые варианты. Более простыми их "аналогами" являются полевые транзисторы, которые (только!) при грамотном схемотехническом подходе вполне способны конкурировать с ламповыми усилителями. И если уж аудиофилы не боятся применения согласующих трансформаторов в выходных каскадах, где это "железо" все равно "звучит", то уж и в предыдущих каскадах можно со спокойной совестью применять трансформаторы. Я имею в виду фазоинверсные каскады, где амплитуда тока (а именно эта составляющая пагубно влияет на "железо") невелика, а амплитуда напряжения достигает значения всего лишь в несколько вольт.

Бесспорно, что любой трансформатор - это своеобразный шаг назад в схемотехническом отношении в век гигагерцовых Pentium"ов. Но есть несколько "но", о которых весьма уместно иногда вспомнить. Первое - грамотно изготовленный переходной или согласующий трансформатор никогда не внесет столько нелинейных искажений, сколько могут внести самых разнообразных искажений несколько "неправильных" усилительных каскадов. Второе - трансформаторный фазоинвертор действительно позволяет достигнуть реальной симметрии противофазных сигналов, сигналы с его обмоток по-настоящему близки друг к другу как по форме, так и по амплитуде. К тому же он - пассивный, и его характеристики не зависят от питающих напряжений. И если ваш УМЗЧ реально симметричен (в данном случае имеются в виду его входные импедансы), то асимметрия УМЗЧ будет уже определяться более разбросом параметров радиокомпонентов в плечах УМЗЧ, чем фазоинверсным каскадом. Поэтому не рекомендуется использовать в таком УМЗЧ радиоэлементы с допусками более 5% (исключения лишь составляют цепи генератора тока, питающего дифференциальный каскад). Следует отдавать себе отчет, что при разбросах параметров транзисторов в плечах УМЗЧ более 20% точность резисторов уже теряет свою актуальность. И наоборот, когда используются хорошо подобранные транзисторы, имеет смысл применять резисторы с допуском 1%. Их конечно же, можно и подобрать с помощью хорошего цифрового омметра.

Одна из наиболее удачных схемотехнических разработок фазоинвертора представлена на рис.2. Кажущаяся слишком простой, она все же требует пристального внимания к себе, поскольку имеет несколько "секретов". Первый из таких - это правильный выбор транзисторов по параметрам. Транзисторы VT1 и VT2 не должны иметь значительных утечек между электродами (имеется в виду переходы затвор-исток). Кроме того, транзисторы должны иметь близкие параметры, особенно это касается начального тока стока - сюда наиболее подходят экземпляры с I с.нач. 30-70 мА. Напряжения питания должны быть стабилизированы, правда коэффициент стабилизации блока питания существенной роли не играет, к тому же, отрицательное напряжение можно взять и со стабилизатора УМЗЧ. Чтобы электролитические конденсаторы поменьше вносили своих искажений, они зашунтированы неэлектролитическими - типа К73-17.

Немного подробнее рассмотрим особенности изготовления главного узла в этой схеме - фазорасщепительного (фазоинверсного) трансформатора. От аккуратности его изготовления зависит как индуктивность рассеяния, так и диапазон эффективно воспроизводимых частот, не говоря уже об уровне различных искажений. Так вот, два основных секрета технологического процесса изготовления этого трансформатора таковы. Первое - необходимость отказаться от простой намотки обмоток. Привожу два использованных мною варианта намотки этого трансформатора. Первый - изображен на рис.3, второй - на рис.4. Суть метода такой намотки заключается в следующем. Каждая из обмоток (I, II или III) состоит из нескольких обмоток, содержащих строго одинаковое количество витков. Необходимо избегать какой бы то ни было ошибки в количестве витков, т.е. разницы в витках между обмотками. Поэтому решено было производить намотку трансформатора давно проверенным способом. По рис.3 используется шесть проводов (например, ПЭЛШО-0,25). Заранее рассчитывают необходимую длину обмоточного провода (не всегда же и не у каждого радиолюбителя окажется под рукой шесть бухт провода одного диаметра), складывают шесть проводов вместе и производят намотку всех обмоток одновременно. Далее необходимо лишь найти отводы нужных обмоток и соединить их попарно-последовательно. По рис.4 использовалось девять проводников для этого варианта. И еще, мотать необходимо так, чтобы провода одного витка не расходились в разные стороны далеко-широко один от другого, а держались общего рулона вместе. Мотать же отдельными проводами недопустимо, трансформатор будет буквально "звенеть" во всем диапазоне звуковых частот, индуктивность рассеяния увеличится, возрастут и искажения УМЗЧ из-за асимметрии сигналов на выходах трансформатора.

Да и ошибиться очень легко можно при отдельных способах намотки симметричных обмоток. А ошибка в несколько витков дает о себе знать несимметричностью противофазных сигналов. Если уж продолжать откровенно, то был изготовлен трансформатор фазоинвертора (в единственном роде, экземпляре) в... 15 жил. Был эксперимент, который вошел в коллекцию прекрасно звучащих конструкций УМЗЧ. Еще раз хочется сказать о том, что не трансформаторы виноваты в плохой работе некоторых схем, а их конструкторы. Во всем мире весьма расширилось производство ламповых УМЗЧ, их подавляющее большинство содержит разделительные трансформаторы (вернее, согласующие), без которых ламповый каскад (типовая схема двухтактного выходного каскада содержит 2-4 лампы) просто невозможно согласовать с низкоомными акустическими системами. Есть, конечно же, и экземпляры "суперламповых" УМЗЧ, где нет выходных трансформаторов. Их место заняли либо мощные комплементарные пары полевых транзисторов или... батарея мощных ламповых триодов, соединенных параллельно. Но эта тема уже выходит за рамки данной статьи. В нашем случае все гораздо проще. Транзистор VT1 (рис.2) МОП-типа, включенный по схеме с общим стоком (истоковый повторитель) работает на генератор тока (источник тока), выполненный на транзисторе VT2. Применять мощные полевые транзисторы типа КП904 не следует, у них повышенные входные и проходные емкости, что не может не сказаться на работе этого каскада.

Еще один камень преткновения, серьезная проблема в создании широкополосного трансформатора ожидает конструктора при выборе магнитопровода. Здесь уместно кое-что добавить к тому, что можно встретить в доступной радиолюбителю литературе. Различные варианты конструкций как у радиолюбителей, так и у профессионалов предлагают использование разных материалов магнитопроводов трансформаторов, которые не доставляли бы хлопот как при их приобретении, так и при их использовании. Суть методов такова.

Если ваш УМЗЧ будет работать на частотах выше 1 кГц, то можно смело использовать ферритовые сердечники. Но отдавать предпочтение следует экземплярам магнитопроводов с наибольшей магнитной проницаемостью, очень хорошо работают сердечники от строчных трансформаторов телевизоров. Следует предостеречь конструкторов от использования сердечников, которые уже находились длительное время в эксплуатации. Известно, что ферритовые изделия теряют с "возрастом" свои параметры, в том числе и начальную магнитную проницаемость, "неповторимая" старость их убивает не меньше, чем, например, магниты длительно эксплуатируемых громкоговорителей, о чем почему-то почти все умалчивают.

Далее о сердечниках - если УМЗЧ используют в качестве басового варианта, то смело можно применять традиционные Ш-образные пластинчатые варианты магнитопроводов. Необходимо подчеркнуть, что экранировка всех таких трансформаторов почти везде была необходимостью и потребностью. Что уж тут поделаешь, за все необходимо расплачиваться. Обычно было достаточным изготовление "кокона" из обычной кровельной жести толщиной 0,5 мм.

На НЧ хорошо работают и тороидальные сердечники. Кстати, их использование упрощает уничтожение всевозможных наводок со стороны сетевых трансформаторов. Здесь сохраняется "обратимость" преимущества тороидального сердечника - в сетевом варианте он отличается малым внешним полем излучения, во входных же (сигнальных) цепях - он малочувствителен к внешним полям. Что же касается широкополосного варианта (20 - 20 000 Гц), то наиболее правильным будет применение двух разных видов сердечников, размещенных рядом, в одном окне каркаса для намотки обмоток трансформатора. При этом устраняется завал как на высоких частотах (здесь работает ферритовый сердечник), так и на низких частотах (здесь работает трансформаторная сталь). Дополнительного улучшения звуковоспроизведения в области 1-15 кГц добиваются покрытием пластин стального сердечника лаком, как это делают в ламповых УМЗЧ. При этом каждая пластина "работает индивидуально" в составе сердечника, чем и достигается уменьшение всевозможных потерь на вихревые токи. Нитролак высыхает быстро, тонким слоем его наносят простым окунанием пластины в посуду с лаком.

Многим может показаться слишком кропотливой такая технология изготовления трансформатора в фазоинверторе, но поверьте на слово - "игра стоит свеч", ибо "что посеешь, то и пожнешь". А насчет сложности, "нетехнологичности" можно сказать следующее - за один выходной день удавалось без спешки изготовить два таких трансформатора, да и распаять их обмотки в необходимом порядке, что не скажешь о выходных трансформаторах для ламповых УМЗЧ.

Теперь несколько слов о количестве витков. Теория требует увеличения индуктивности первичной обмотки (I), с ее увеличением расширяется диапазон воспроизводимых частот в сторону более низких частот. Во всех конструкциях вполне достаточной была намотка обмоток до заполнения каркаса, диаметр провода применялся 0,1 - для 15 жил, 0,15 - для 9 жил и 0,2 для 6-жильного варианта. В последнем случае использовался и имеющийся ПЭЛШО 0,25.

Для тех же. кто не переносит трансформаторы , есть и бестрансформаторный вариант - рис.5. Это простейший. но вполне звучащий вариант схемы фазоинверторного каскада, который использовался не только в симметричных схемах УМЗЧ, но и в мощных мостовых УМЗЧ. Простота зачастую обманчива, поэтому ограничу себя в критике подобных схем, но осмелюсь сказать, что площади синусоид отсимметрировать довольно сложно, зачастую необходимо вводить дополнительные цепи смещения и балансировок, а качество звуковоспроизведения при этом оставляет желать лучшего. Несмотря на вносимые трансформаторами фазовые, амплитудно-частотные искажения, они позволяют достигнуть практически линейной АЧХ в области звуковых частот, т.е. во всем диапазоне 20 Гц - 20 000 Гц. От 16 кГц и выше могут сказаться емкости обмоток, но частично уйти в сторону от этой проблемы позволяет дополнительно увеличенная площадь сечения магнитопровода. Правило простое, подобное сетевым трансформаторам: увеличив площадь сечения магнитопровода сердечника трансформатора, например, в два раза. смело уменьшают количество витков обмоток в два раза и т.д.

Расширить область эффективно воспроизводимых частот вниз, т.е. ниже 20 Гц, можно следующим способом. Полевые транзисторы (VT1, VT2 - рис.2) применяют с большими значениями I с.нач. и увеличивают емкость конденсатора C4 до 4700 мкф. Электролитические конденсаторы работают значительно чище, если к ним приложено прямое поляризующее напряжение в несколько вольт. Очень удобно в этом случае поступать следующим образом. Устанавливают в верхний (по схеме) транзистор VT1 экземпляр с начальным током стока большим, нежели у транзистора VT2. Можно поступить и еще более "эффективно", применив балансировочный резистор для транзистора VT2, фрагмент схемы с таким резистором показан на рис.6. Первоначально движок подстроечного резистора R2" находится в нижнем (по схеме) положении, перемещение его движка вверх вызывает увеличение тока стока транзистора VT2, потенциал на положительной обкладке конденсатора C4 становится более отрицательным. Обратный процесс происходит при противоположном перемещении движка резистора R2. Таким образом можно отрегулировать каскад по наиболее подходящим режимам, особенно, когда нет транзисторов (VT1 и VT2) с близкими значениями I с.нач. , а устанавливать приходится то, что есть под рукой...

Довольно подробно я остановился на такой как будто бы очень простой схеме. Она-то простая, но не примитивная. Есть у нее и неоспоримые преимущества по сравнению с "всепропускающими" гальванически соединенными схемами усилителей-фазоинверторов. Первый такой плюс - это подавление инфранизкочастотных помех (например в ЭПУ), второй же - "отсечка" ультразвуковых помех вроде мощных радиостанций, различных ультразвуковых установок и др. И еще одно положительное свойство такой схемы следует подчеркнуть особо. Речь идет об отсутствии каких-либо проблем при стыковке отличных симметричных схем с асимметричным входом. Стоит взглянуть на рис.5, и сразу становится понятно (если человек имел с этим дело!), что проблема потенциалов здесь просто не решена никак. Частично ее решают заменой электролитического конденсатора на батарею параллельно соединенных неэлектролитических, мол временная задержка подключения АС все решит. Задержка во времени подключения акустических систем к УМЗЧ щелчки и выбросы при включении действительно устраняет, но вопрос возникновения дополнительных искажений из за разных потенциалов и разных выходных импедансов фазоинвертора решить она никак не может. Данная схема усилителя-фазоинвертора (рис.2) успешно использовалась с различными УМЗЧ, в том числе и с ламповыми симметричными.

В последнее время в периодических изданиях можно найти схемы УМЗЧ на мощных КП901 и КП904. Но не упоминают авторы о том, что полевые транзисторы следует отбраковывать на токах "утечки". Если, к примеру, VT1 и VT2 (в схеме рис.2) однозначно необходимо использовать высококачественные экземпляры, то в каскадах с большими амплитудами напряжений и токов, а главное - там, где входное сопротивление МОП транзистора (его уменьшение) роли не играет, можно применять и худшие экземпляры. Достигнув максимальных значений утечек, МОП транзисторы, как правило, стабильны в будущем и дальнейшего ухудшения их параметров уже не наблюдается со временем (в большинстве случаев).

Число транзисторов с повышенными утечками в цепи затвора, например, в одной пачке (стандарт - 50 шт.) может колебаться от 10 до 20 шт. (а то и более). Отбраковать мощные транзисторы не составляет большого труда - достаточно собрать своеобразный стенд, например, по рис.6 и включить в цепь затворов цифровой амперметр (стрелочные приборы в этом случае слишком чувствительны к перегрузкам и неудобны из-за необходимости многократных переключений с диапазона на диапазон).

А теперь, когда фазоинвертор уже изготовлен, можно приступать и к схеме рис.1, т.е. вернуться непосредственно к УМЗЧ. Широко распространенные разъемы (гнезда) СШ-3, СШ-5 и им подобные вообще использовать нельзя, как это делают многие конструкторы и делали заводы-изготовители. Контактное сопротивление такого соединения значительно (0,01 - 0,1 Ом!) и еще колеблется в зависимости от протекающего тока (с увеличением тока сопротивление растет!). Поэтому следует применять мощные разъемы (например, от старой военной радиоаппаратуры) с малым сопротивлением контактов. То же касается и контактов реле в блоке защиты АС от возможного появления на выходе УМЗЧ постоянного напряжения. И не надо их охватывать (контактные группы) какими-либо обратными связями для уменьшения искажений. Поверьте на слово, что на слух (субъективная экспертиза) их практически не слышно (при достаточно малых сопротивлениях контактов), чего не скажешь об "электронных" искажениях, вносимых всеми усилительными каскадами, конденсаторами и другими компонентами УМЗЧ, которые непременно вносят яркие краски в общую картину звуковоспроизведения. Свести к минимуму всевозможные искажения можно рациональным использованием усилительных каскадов (особенно это касается усилителей напряжения - чем их меньше, тем лучше качество усиленного сигнала). В данном УМЗЧ всего один каскад усиления напряжения - это транзистор VT3 (левое плечо) и VT4 (правое плечо). Каскад на транзисторах VT6 и VT5 всего лишь согласующие (токовые) эмиттерные повторители. Транзисторы VT3 и VT4 отбирают с h21 э более 50, VT6 и VT5 - более 150. В этом случае никаких проблем при работе УМЗЧ на больших мощностях возникать не будет. Напряжение отрицательной обратной связи по постоянному и переменному току поступает на базы транзисторов VT6 и VT5 через резисторы R24 и R23. Глубина этой ОС всего около 20 дБ, поэтому динамические искажения в УМЗЧ отсутствуют, но такой ОС вполне достаточно для поддержания режимов выходных транзисторов VT7 и VT8 в необходимых пределах. УМЗЧ достаточно устойчив к ВЧ самовозбуждению. Простота схемы позволяет его быстро размонтировать, поскольку допускается независимое отключение питания (-40 В) драйвера и оконечных транзисторов (2 x 38 В). Полная симметрия усилителя способствует снижению нелинейных искажений и снижению чувствительности к пульсациям питающего напряжения, а также дополнительному подавлению синфазных помех, поступающих на оба входа УМЗЧ. Недостаток усилителя состоит в значительной зависимости нелинейных искажений от h21 э примененных транзисторов, но если транзисторы будут иметь h21 вых = 70 Вт) равно 1,7 В (эффективное значение).

На транзисторах VT1 и VT2 выполнен источник (генератор тока), питающий дифференциальный каскад (драйвер). Величину этого тока 20...25 мА устанавливают подстроечным резистором R3 (470 Ом). Поскольку от этого тока зависит и ток покоя, то и для термостабилизации последнего транзистор VT1 размещен на теплоотводе одного из транзисторов выходного каскада (VT7 или VT8). Увеличение температуры теплоотвода выходного транзистора соответственно передается размещенному на этом теплоотводе транзистору VT1, при нагревании же последнего происходит снижение отрицательного потенциала на базе транзистора VT2. Это призакрывает транзистор VT2, ток через него уменьшается, что соответствует уменьшению тока покоя выходных транзисторов VT7 и VT8. Таким образом и осуществляется стабилизация тока покоя выходных транзисторов при значительном нагревании их теплоотводов. Несмотря на кажущуюся простоту реализации такой термостабилизации, она достаточно эффективна и никаких проблем в надежности УМЗЧ не было. Очень удобно контролировать токи дифференциальных транзисторов (VT3 и VT4) по падению напряжения на резисторах R7 и R15 или R21 и R26. Подстроечный резистор R11 - балансировочный, служит для установки нулевого потенциала на громкоговорителе (на выходе УМЗЧ).

Схема узла защиты громкоговорителей (рис.7) выполнена по традиционной схеме. Поскольку была выбрана конструкция размещения УМЗЧ в раздельных корпусах, то и узлы защиты акустических систем у каждого УМЗЧ были свои. Схема защиты АС проста и надежна, этот вариант прошел длительную проверку во многих конструкциях и зарекомендовал себя как хороший и надежный, не раз "спасающий" жизнь дорогостоящих громкоговорителей. Удовлетворительной работой схемы можно считать срабатывание реле К1 при подаче постоянного напряжения 5 В между точками А и Б. Очень просто это проверить с помощью регулируемого блока питания (с изменяемым выходным напряжением). В разных конструкциях применялись различные типы реле, так же изменялось и напряжение блока питания этого узла в пределах 30-50 В (для больших значений этого напряжения следует заменить транзисторы VT1 и VT2 на более высоковольтные экземпляры, например КТ503Е и др.)

Предпочтение для использования в блоке защиты следует отдавать экземплярам реле с наиболее сильноточными группами контактов, с большой площадью поверхностей соприкосновения контактов. А вот реле РЭС-9 или РЭС-10 вообще применять не следует - при больших выходных мощностях УМЗЧ они начинают вносить свои "неповторимые" окраски в усиленный сигнал. Блок защиты АС питают от отдельного выпрямителя, причем необходимо исключить какие-либо гальванические соединения этого блока с УМЗЧ, за исключением лишь датчиков выходных напряжений - точки А и Б подключены к выходам УМЗЧ.

Драйверы обоих каналов можно запитать от одного общего стабилизатора напряжения. При этом оба канала УМЗЧ объединяют в один корпус, а блоки питания собраны в другом корпусе. Естественно, здесь широкое поле выбора для каждого конкретного случая, кому что более подходит в конструктивном исполнении. Схема одного из вариантов стабилизатора для питания драйверов изображена на рис.8. На транзисторе VT1 собран генератор тока, питающий транзистор VT2, необходимое напряжение на выходе стабилизатора устанавливают подстроечным резистором R6. Следует подчеркнуть, что от напряжения этого стабилизатора зависит в первую очередь максимальная выходная мощность УМЗЧ. Но увеличивать напряжение свыше 50 В не рекомендуется из-за возможного выхода из строя транзисторов VT3 и VT4 драйвера. Суммарное напряжение стабилизации стабилитронов должно быть в пределах 27-33 В. Ток через стабилитроны подбирается резистором R4. Резистор R1 ограничительный (по току), предотвращает выход из строя регулирующего транзистора VT2. Последнее вполне вероятно в процессе налаживания, при этом повышение питания драйвера сможет вывести весь УМЗЧ из строя. После налаживания УМЗЧ резистор R1 в стабилизаторе можно замкнуть отрезком провода, а можно этого и не делать, поскольку драйверы потребляют ток всего лишь немногим более 50 мА - влияние резистора R1 на параметры стабилизатора незначительны при малых нагрузочных токах.

При блочной конструкции придется полностью разделять питания обоих УМЗЧ, в том числе и драйверов. Но в любом случае для питания драйвера необходим отдельный выпрямитель со своей обмоткой в трансформаторе. Схема выпрямителя изображена на рис.9. В каждом канале УМЗЧ используется свой трансформатор питания. Такой вариант конструктивного исполнения имеет несколько преимуществ по сравнению с традиционным использованием одного трансформатора. Первое, что удается, так это уменьшить высоту блока в целом, поскольку размеры (высота) сетевого трансформатора значительно снижается при раздельых питающих трансформаторах для каждого УМЗЧ. Далее, легче производить намотку, поскольку диаметр намоточных проводов без ущерба для мощности УМЗЧ можно снижать в 1,4 раза. В связи с этим и сетевые обмотки можно включать противофазно для уменьшения сетевых наводок (это очень помогает компенсировать излучение полей трансформаторов, особенно при размещении в одном корпусе с УМЗЧ других схем усилителей - блоков тембров, регулировки громкости и т.п.). Разделение питающих цепей выходных транзисторов УМЗЧ позволяет увеличить и качество воспроизводимого сигнала, особенно на низких частотах (переходные искажения в каналах на НЧ также снижаются). Для снижения уровня интермодуляционных искажений, вызываемых сетевым питанием, в трансформаторы введены электростатические экраны (один слой провода, намотанного виток к витку).

Во всех вариантах конструкций УМЗЧ использованы тороидальные магнитопроводы для трансформаторов. Намотка производилась вручную с помощью челноков. Можно порекомендовать и упрощенный вариант конструкции блока питания. Для этого используют фабричный ЛАТР (хорошо подходит девятиамперный экземпляр). Первичная обмотка как самая трудная в процессе намотки - уже готовая, необходимо лишь намотать экранную обмотку и все вторичные и трансформатор прекрасно будет работать. Окно у него достаточно просторное для размещения обмоток для обоих каналов УМЗЧ. Кроме того, при этом можно драйверы и усилители фазоинверторы запитать от общих стабилизаторов, "сэкономив" в этом случае две обмотки. Недостаток такого трансформатора - большая высота (кроме, конечно же, и вышеперечисленных обстоятельств).

Теперь о деталях. Устанавливать низкочастотные диоды (вроде Д242 и им подобных) для питания УМЗЧ не следует - увеличатся искажения на высоких частотах (от 10 кГц и выше), кроме того в схемы выпрямителей были дополнительно внесены керамические конденсаторы, позволяющие снизить интермодуляционные искажения, вызываемые изменением проводимости диодов в момент их коммутации. Таким образом снижается влияние сетевого питания на УМЗЧ при его работе на высоких частотах звукового диапазона. Еще лучше обстоит дело с качеством при шунтировании электролитических конденсаторов в сильноточных выпрямителях (выходные каскады УМЗЧ) неэлектролитическими. При этом на слух и первое и второе дополнение схем выпрямителей достаточно отчетливо воспринималось субъективной экспертизой - проверкой на слух работы УМЗЧ, отмечалась более естественная его работа при воспроизведении нескольких ВЧ-составляющих разных частот.

О транзисторах. Заменять транзисторы VT3 и VT4 худшими по частотным свойствам экземплярами (КТ814, например) не стоит, коэффициент гармоник возрастает при этом не менее, чем в два раза (на ВЧ-участке и того более). На слух это очень хорошо заметно, средние частоты воспроизводятся неестественно. С целью упрощения конструкции УМЗЧ в выходном каскаде использованы составные транзисторы серии КТ827А. И хотя они, в принципе, достаточно надежны, их все же необходимо проверять на максимально выдерживаемое (у каждого экземпляра оно свое) напряжение коллектор-эмиттер (имеется в виду прямое напряжение U кэ max. для закрытого транзистора). Для этого базу транзистора соединяют с эмиттером через резистор 100 Ом и подают, плавно увеличивая, напряжение: на коллектор - плюс, на эмиттер - минус. Экземпляры, обнаруживающие протекание тока (предел амперметра - 100 мкА) для U кэ = 100 В не пригодны для данной конструкции. Они могут работать, но это не надолго... Экземпляры же без таких "утечек" работают надежно годами, не создавая никаких проблем. Схема стенда для испытаний изображена на рис.10. Естественно, что параметры серии КТ827 желают быть лучшими, особенно это касается их частотных свойств. Поэтому их заменяли "составными" транзисторами, собранными на КТ940 и КТ872. Необходимо лишь отобрать КТ872 с возможно большим h21 э, поскольку у КТ940 недостаточно велик I к max . Такой эквивалент просто отлично работает во всем звуковом диапазоне, а особенно на высоких частотах. Схема включения двух транзисторов вместо одного составного типа КТ827А изображена на рис.11. Транзистор VT1 можно заменить на КТ815Г, a VT2 - практически любым мощным (P к > 50 Вт и с U э > 30).

Резисторы применены типов С2-13 (0,25 Вт), МЛТ. Конденсаторы типов К73-17, К50-35 и др. Налаживание правильно (без ошибок) собранного УМЗЧ заключается в установке тока покоя транзисторов выходного каскада УМЗЧ - VT7 и VT8 в пределах 40-70 мА. Очень удобно контролировать значение тока покоя по падению напряжения на резисторах R27 и R29. Ток покоя задают резистором R3. Близкое к нулевому постоянное выходное напряжение на выходе УМЗЧ устанавливают балансировочным резистором R11 (добиваются разности потенциалов не более 100 мВ).

ЛИТЕРАТУРА

  1. Сухов Н.Е. и др. Техника высококачественного звуковоспроизведения - Киев, "Техника", 1985
  2. Сухов Н.Е. УМЗЧ высокой верности. - "Радио", 1989 - №6, №7.
  3. Сухов Н.Е. К вопросу об оценке нелинейных искажений УМЗЧ. - "Радио", №5. 1989.

В последнее время все чаще многие фирмы и радиолюбители используют в своих конструкциях мощные полевые транзисторы с индуцированным каналом и с изолированным затвором. Однако до сих пор непросто приобрести комплементарные пары полевых транзисторов достаточной мощности, поэтому радиолюбители подыскивают схемы УМЗЧ, в которых применены мощные транзисторы с каналами одинаковой проводимости. В журнале “Радио” опубликовано несколько таких конструкций. Автор предлагает еще одну, но со структурой, несколько отличающейся от ряда распространенных в конструкциях УМЗЧ схем.

Технические параметры:

Номинальная выходная мощность на нагрузке сопротивлением 8 Ом: 24 Вт

Номинальная выходная мощность на нагрузке сопротивлением 16 Ом: 18 Вт

Коэффициент гармоник при номинальной мощности на нагрузке 8 Ом: 0,05 %

Коэффициент гармоник при номинальной мощности на нагрузке 16 Ом: 0,03 %

Чувствительность: 0,7 В

Коэффициент усиления: 26 дБ

В классическом транзисторном УМЗЧ последние три десятка лет используется дифференциальный каскад. Он необходим для сравнения входного сигнала с выходным, возвращающимся через цепи ООС, а также для стабилизации “нуля” на выходе усилителя (в большинстве случаев питание двухполярное, и нагрузка подключена непосредственно, без разделительного конденсатора). Вторым следует каскад усиления напряжения - драйвер, обеспечивающий полную амплитуду напряжения, необходимого для последующего усилителя тока на биполярных транзисторах. Так как этот каскад относительно слаботочный, усилитель тока (повторитель напряжения) представляет собой две-три пары составных комплементарных транзисторов. В результате после дифференциального каскада сигнал проходит еще три, четыре, а то и пять ступеней усиления с соответствующими искажениями в каждой из них и задержкой. Это - одна из причин возникновения динамических искажений.

В случае использования мощных полевых транзисторов отпадает необходимость в многокаскадном усилении тока. Однако для быстрой перезарядки межэлектродной емкости затвор-канал полевого транзистора тоже требуется существенный ток. Для усиления звуковых сигналов этот ток обычно намного меньше, но в переключательном режиме на высоких звуковых частотах он оказывается заметным и составляет десятки миллиампер.

В описываемом ниже УМЗЧ реализована концепция минимизации числа каскадов. На входе усилителя - каскадный вариант дифференциального каскада на транзисторах VT2, VT3 и VT4, VT5, нагрузкой для которого применен активный источник тока с токовым зеркалом на транзисторах VT6, VT7. Генератор тока на VT1 задает режим дифференциального каскада по постоянному току. Применение последовательного включения транзисторов в каскаде, позволяет использовать транзисторы с очень высоким коэффициентом передачи тока базы, которые отличаются небольшим значением максимального напряжения (обычно UKЭmax=15 B).

Между минусовой цепью питания усилителя (истоком VT14) и базами транзисторов VT4 и VT5 включены два стабилитрона, роль которых выполняют обратно включенные переходы база-эмиттер транзисторов VT8, VT9. Сумма их напряжений стабилизации несколько меньше предельно допустимого напряжения затвор-исток VT14, так и обеспечивается защита мощного транзистора.

В выходном каскаде сток полевого транзистора VT14 подключен к нагрузке через коммутационный диод VD5. Полупериоды сигнала минусовой полярности поступают через диод на нагрузку, полупериоды плюсовой полярности через него не проходят, а поступают через транзистор VT11 для управления затвором полевого транзистора VT13, который открывается лишь в эти полупериоды.

Похожие схемы выходного каскада с коммутационным диодом известны в схемотехнике усилителей на биполярных транзисторах как каскад с динамической нагрузкой. Эти усилители работали в режиме класса В, т.е. без сквозного тока покоя. В описываемом же усилителе с полевыми транзисторами есть еще транзистор VT11, который выполняет сразу несколько функций: через него поступает сигнал для управления затвором VT13, а также образована местная обратная связь по току покоя, стабилизирующая его. Кроме того, тепловой контакт транзисторов VT11 и VT13 стабилизирует температурный режим всего выходного каскада. В результате транзисторы выходного каскада работают в режиме класса АВ, т.е. с уровнем нелинейных искажений, соответствующим большинству вариантов двухтактных каскадов. С резистора R14 и с диода VD5 снимается напряжение, пропорциональное току покоя, и подается на базу VT11. На транзисторе VT10 собран активный источник стабильного тока, необходимый для работы выходного каскада. Он является динамической нагрузкой для VT14, когда тот активен в соответствующие полупериоды сигнала. Составной стабилитрон, образованный VD6 и VD7, ограничивает напряжение затвор-исток VT13, защищая транзистор от пробоя.

Такой двухканальный УМЗЧ был собран в корпусе приемника ROTEL RX-820 взамен имеющегося там УМЗЧ. Пластинчатый теплоотвод усилен металлическими стальными стойками для увеличения эффективной площади до 500 см 2 . В блоке питания заменены оксидные конденсаторы на новые общей емкостью 12000 мкФ на напряжение 35 В. Также были использованы дифференциальные каскады с активными источниками тока (VT1-VT3) от прежнего УМЗЧ. На макетных платах собраны каскодные продолжения дифференциального каскада с токовыми зеркалами для каждого канала (VT4-VT9, R5 и R6) и активные источники тока для выходных каскадов (VT10 обоих каналов) на общей плате с общими элементами R9, VD3 и VD4. Транзисторы VT10 прижаты к металлическому шасси тыльными сторонами, чтобы обойтись без изолирующих прокладок. Выходные полевые транзисторы закреплены на общем теплоотводе площадью не менее 500 см2 через теплопроводящие изоляционные прокладки винтами. Транзисторы VT11 каждого канала смонтированы непосредственно на выводах транзисторов VT13 так, чтобы обеспечить надежный тепловой контакт. Остальные детали выходных каскадов смонтированы на выводах мощных транзисторов и монтажных стойках. В непосредственной близости от выходных транзисторов размещены конденсаторы С5, С6.

О применяемых деталях. Транзисторы VT8 и VT9 можно заменить стабилитронами на напряжение 7-8 В, работоспособными при небольшом токе (1 мА), транзисторы VT1-VT5 могут быть заменены любыми из серии КТ502 или КТ3107А, КТ3107Б, КТ3107И, причем их желательно отобрать близкими по коэффициенту передачи тока базы попарно, VT6 и VT7 можно заменить на КТ342 или КТ3102 с буквенными индексами А, Б, на месте VT11 может быть любой из серии КТ503. Заменять другими стабилитроны Д814А (VD6 и VD7) не стоит, так как ток динамической нагрузки примерно равен 20 мА, а предельный ток через стабилитроны типа Д814А равен 35 мА, так что они вполне подходят. Обмотка дросселя L1 намотана на резисторе R16 и содержит 15-20 витков провода ПЭЛ 1,2.

Налаживание каждого канала УМЗЧ начинают при отключенном на время выводе стока VT13 от цепи питания. Замеряют ток эмиттера VT10 - он должен быть примерно 20 мА. Далее подключают через амперметр сток транзистора VT13 к источнику питания, чтобы замерить ток покоя. Он не должен намного превышать 120 мА, это свидетельствует о правильной сборке и об исправности деталей. Ток покоя регулируют подбором резистора R10. После включения его следует установить сразу около 120 мА, после прогрева в течение 20-30 мин он уменьшится до 80-90 мА.

Возможное самовозбуждение устраняется подбором конденсатора С8 емкостью до 5-10 пФ. В авторском варианте самовозбуждение возникло из-за бракованного транзистора VT13 в одном из каналов. При других напряжениях питания следует пересчитать площадь теплоотвода исходя из изменения максимальной мощности в ту или другую сторону и исключить превышение допустимых параметров для используемых полупроводниковых приборов.

«Радио» №12, 2008

Поделиться: